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This article is meant to serve as a guide to recent developments in the study of
the scaling limit of critical models. These new developments were made possible
through the definition of the Stochastic Löwner Evolution (SLE) by Oded
Schramm. This article opens with a discussion of Löwner’s method, explaining
how this method can be used to describe families of random curves. Then we
define SLE and discuss some of its properties. We also explain how the connec-
tion can be made between SLE and the discrete models whose scaling limits
it describes, or is believed to describe. Finally, we have included a discussion
of results that were obtained from SLE computations. Some explicit proofs
are presented as typical examples of such computations. To understand SLE
sufficient knowledge of conformal mapping theory and stochastic calculus is
required. This material is covered in the appendices.
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1. INTRODUCTION

The Stochastic Löwner Evolution appears as a new branch to an already
varied palette of techniques available for the study of continuous phase
transitions in two dimensions. Phase transitions are among the most strik-
ing phenomena in physics. A small change in an environmental parameter,
such as the temperature or the external magnetic field, can induce huge
changes in the macroscopic properties of a system. Typical examples
are liquid-gas transitions and spontaneous magnetization in ferromagnets.
Many more examples are observed in nature in the most diverse systems,
and for a long time physicist have been searching for explanations of these



phenomena (for a nice introduction explaining the notions involved in the
physical interpretation of these phenomena, see, for example, ref. 49).

To characterize phase transitions, one introduces an order parameter,
a quantity which vanishes on one side of the phase transition and is
nonzero on the other side. For magnets one uses the magnetization, while
for liquid-gas transitions the density difference between the two phases
defines the order parameter. At the phase transition, the change in the
order parameter can be either discontinuous or continuous. In the former
case the transition is called first-order, in the latter case it is called contin-
uous or second-order.

It is found experimentally that near continuous phase transitions many
observable quantities have a power-law dependence on their parameters
with non-integer powers, called critical exponents. Thus, the order param-
eter for example typically behaves like (Tc − T)b just below the transition
temperature Tc, and observables such as the specific heat or the suscepti-
bility diverge as |T − Tc |−a near Tc. Moreover, the critical exponents appear
to be universal in the sense that there are classes of different systems, that
show critical behaviour with the exact same values of the critical exponents.
This phenomenon is known as universality (some examples are given in the
standard reference (44) on the theory of critical phenomena).

Universality allows one to draw parallels between different systems
and different types of phase transitions. Theoretically, it leads to the
conclusion that the behaviour near a critical point can be described by just
a few relevant parameters, and that many microscopic details of the system
become irrelevant near the critical point. It turns out that the critical
exponents are largely determined by just the dimension of the system, and
the dimension and symmetries of the order parameter. This justifies the use
of simple model systems, in which all the details of the interactions have
been neglected, to investigate critical behaviour. Examples of such models
are the Ising model, the q-state Potts models, and O(n) models. The
concept of universality is particularly useful in those cases where one of
these simple models can be solved exactly, because such solutions deter-
mine the universal properties of a whole class of systems, including those
far too difficult to solve exactly.

The behaviour of a system near a transition point is governed by the
fluctuations in the system. When one approaches the critical point from the
disordered phase, these local fluctuations tend to be correlated over larger
and larger distances as one gets closer to the transition point. The typical
length-scale t of these correlations, the correlation length, diverges as one
approaches the critical point. This led physicists to introduce the idea of
length-rescaling (26) as a tool for studying critical phenomena, and ultima-
tely led to the formulation of the renormalization group approach. (61) The
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idea of this approach is that if we look at the system at successively larger
scales, the correlation length will be successively reduced. Away from the
critical point the correlation length is finite, and rescaling drives us further
away from the transition, but at the critical point the correlation length is
infinite, and the system is invariant under rescaling.

The hypothesis of scale-invariance led to the development of several
techniques for the computation of critical exponents and other observables
of critical behaviour, such as correlation functions. One of these techniques
is the successful Coulomb Gas method, (46) which produces exact results
provided certain qualitative assumptions are valid.

Another development came from the idea that we need not restrict
ourselves to studying scale-invariance for a system as a whole, but that we
might consider scaling properties locally. More precisely, the system can
be rescaled with a factor that depends on the position, and we may wonder
if the system is invariant under such transformations. This approach led
people to believe that in the continuum limit, many model systems are not
just scale-invariant, but are in fact conformally invariant. (14) The natural
realm for studying conformally invariant behaviour is that of two-dimen-
sional systems, since in two dimensions the group of conformal transfor-
mations is so much richer than in higher dimensions. Over the years, the
assumption of conformal invariance has indeed been successful in explain-
ing critical behaviour in two-dimensional systems. The assumption is sup-
ported by the agreement of the results with the results from exactly solv-
able models. (8)

Many questions remain, especially from the mathematical point of
view. The physicist intuitively believes that there exists a continuum or
scaling limit of his discrete models when the lattice spacing goes to zero.
But when exactly does this limit exist? What does the limit model look like?
Is it indeed conformally invariant? Such questions have puzzled both
mathematicians and physicists for a long time, and answers to these ques-
tions have seemed quite far away.

A big step forward was made when Oded Schramm (53) combined an
old idea of Karl Löwner (43) (who later changed his name to Charles
Loewner) from univalent-function theory with stochastic calculus. This led
to the definition of the one-parameter family of Stochastic Löwner Evolu-
tions, SLEo (see ref. 58 for a mathematical review). Schramm proved that if
the loop-erased random walk has a scaling limit, and if this limit is con-
formally invariant, then it must be described by SLE2. He made similar
conjectures relating critical percolation to SLE6 and uniform spanning
trees to SLE8.

Schramm’s conjectures for loop-erased random walks and uniform
spanning trees were later proved by Lawler et al. (40) using SLE techniques.

A Guide to Stochastic Löwner Evolution and Its Applications 1151



Independently, and using different methods, Smirnov (56) proved the exis-
tence and conformal invariance of the scaling limit of critical site percola-
tion on the triangular lattice, thus establishing the connection with SLE6. It
is believed that many other models in two dimensions, such as the self-
avoiding walk, the q-state Potts models and the O(n) models also have a
conformally invariant scaling limit that is described by an SLEo for some
characteristic value of o.

The goal of the present article is to explain Schramm’s idea to an
audience of both physicists and mathematicians. We place emphasis on
how the connection between the discrete models and SLE is made, and we
have included several typical SLE computations to explain how results can
be derived from SLE. The article is organized as follows. Section 2 contains
a few preliminaries that are required to follow the main line of thought. In
Section 3 we introduce Löwner evolutions, and define SLE. The section
includes a discussion of the Löwner equation in a deterministic setting
as an aid to the reader in understanding the relation between SLE and
random paths.

Section 4 then gives an overview of the main properties of SLE and the
random SLE paths. The connection between SLE and discrete models is
discussed in Section 5. We give explicit descriptions of those models that are
known rigorously to converge to SLE, and we also consider the conjectured
connections between SLE and self-avoiding walks, Potts models and O(n)
models. Examples of results obtained from SLE are given in Section 6. We
have included several worked-out proofs in the text, explaining how things
can be calculated from SLE. The article ends with a short discussion.

To make the article self-contained, the appendices deal with the back-
ground material that is needed to fully understand all the details of the
main text. In addition, we have intended these appendices to make the
mathematical literature on SLE more accessible to interested readers, who
may not have all the required background knowledge. For this reason, the
appendices cover more material than is strictly required for the present
article. Appendix A deals with conformal mapping theory. We present
some general results of the theory, and focus on topics that are specific
for SLE. Appendix B is about stochastic processes, and includes an intro-
duction to the measure-theoretic background of probability theory.

2. PRELIMINARIES

In this short section we give a quick overview of notations and some
basic results concerning conformal mapping theory that are used through-
out this article. For a more comprehensive treatment of this material
including illustrations we refer to Appendix A.
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First, some notation. We shall write C for the complex plane, and R
for the set of real numbers. The open upper half-plane {z: Im z > 0} is
denoted by H, and the open unit disk {z: |z| < 1} by D. We shall only con-
sider domains whose boundary is a continuous curve, and this implies that
the conformal maps we work with have well-defined limit values on the
boundary.

Now suppose that D is a simply connected domain with continuous
boundary, and that z1, z2, z3, and z4 are distinct points on “D, ordered
in the counter-clockwise direction. Then we can map D onto a rectangle
(0, L) × (0, ip) in such a way that the arc [z1, z2] of “D maps onto [0, ip],
and [z3, z4] maps onto [L, L+ip]. The length L > 0 of this rectangle is
determined uniquely, and is called the p-extremal distance between [z1, z2]
and [z3, z4] in D.

A compact subset K of Hb such that H0K is simply connected and
K=K 5 H is called a hull (it is basically a compact set bordering on the
real line). For any hull K there exists a unique conformal map, denoted
by gK, which sends H0K onto H and satisfies the normalization

lim
z Q .

(gK(z) − z)=0. (1)

This map has an expansion for z Q . of the form

gK(z)=z+
a1

z
+ · · · +

an

zn+ · · · (2)

where all expansion coefficients are real. The coefficient a1=a1(K) is
called the capacity of the hull K.

The capacity of a nonempty hull K is a positive real number, and
satisfies a scaling rule and a summation rule. The scaling rule says that if
r > 0 then a1(rK)=r2a1(K). The summation rule says that if J … K are two
hulls and L is the closure of gJ(K0J), then gK=gL p gJ and a1(K)=
a1(J)+a1(L). The capacity of a hull is bounded from above by the square
of the radius of the smallest half-disk that contains the hull and has its
centre on the real line.

3. LÖWNER EVOLUTIONS

This section is devoted to the Löwner equation and its relation to
paths in the upper half-plane. In this section, we will first discuss the
Löwner equation in a deterministic setting. We will show how one can
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describe a given continuous path by a family of conformal maps, and we
will prove that these maps satisfy Löwner’s differential equation. Then we
will prove that conversely, the Löwner equation generates a family of con-
formal maps, that may of may not describe a continuous curve. Finally,
we move on to the definition of the stochastic Löwner evolution. This
section is based on ideas from Lawler et al., (35) Lawler, (33) and Rohde and
Schramm. (51)

3.1. Describing a Path by the Löwner Equation

Suppose that c(t) (where t \ 0) is a continuous path in Hb which starts
from c(0) ¥ R. We allow the path to hit itself or the real line, but if it does,
we require the path to reflect off into open space immediately. In other
words, the path is not allowed to enter a region which has been discon-
nected from infinity by c[0, t] 2 R. To be specific, let us denote by Ht for
t \ 0 the unbounded connected component of H0c[0, t], and let Kt be the
closure of H0Ht. Then we require that for all 0 [ s < t, Ks is a proper
subset of Kt. See Fig. 1 for a picture of a path satisfying these conditions.

We further impose the conditions that for all t \ 0 the set Kt is
bounded, so that {Kt: t \ 0} is a family of growing hulls, and that the
capacity of these hulls eventually goes to infinity, i.e., lim t Q . a1(Kt)=..
The latter condition implies that the path eventually has to escape to infin-
ity, but there do exist paths to infinity whose capacities remain finite
(a formula for the capacity is given at the end of Appendix A.4). Now let
us state the purpose of this subsection.

For every t \ 0 we set gt :=gKt
, and we further define the real-valued

function Ut :=gt(c(t)) (this is the point to which the tip of the path is
mapped). The purpose of this subsection is to prove that the maps gt

satisfy a simple differential equation, which is driven by Ut. Ideas for the
proof were taken from ref. 35. For a different, probabilistic approach, see
ref. 33. The first thing that we show, is that we can choose the time
parameterization of c such that the capacity grows linearly in time. Clearly,
this fact is a direct consequence of the following theorem.

Fig. 1. A path c. The two points represent c(t) and c(t − d), and the shaded area is the set
Kt 0Kt − d. For clarity, the arc CR is drawn much smaller than it is in the proof.
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Theorem 3.1. Both a1(Kt) and Ut are continuous in t.

Proof. The proof relies heavily on properties of p-extremal dis-
tance, and we refer to the chapter on extremal length, Sections 4.1–4.5
and 4.11–4.13, in Ahlfors (2) for the details. We shall prove left-continu-
ity first.

Without loss of generality we may assume that c(0)=0. Fix t > 0, let
R be a large number, say at least several times the radius of Kt, and let
CR be the upper half of the circle with radius 2R centred at the origin.
Fix e > 0. Then by continuity of c(t), there exists a d > 0 such that
|c(t) − c(u)| < e/2 for all u ¥ (t − d, t). Now let Ce be the circle with radius e

and centre c(t), and let S be the arc of this circle in the domain Ht. Then
this set S disconnects Kt 0Kt − d from infinity in Ht − d, see Fig. 1. Observe
that the set Kt 0Kt − d may be just a piece of c, but that it can also be much
larger, as in the figure.

For convenience let us denote by W the part of the domain Ht − d that
lies below CR. Let L be the p-extremal distance between S and CR in W. By
the properties of p-extremal distance, because the circle with radius R and
centre at c(t) lies below CR, L must be at least log(R/e)/2. Note that since
p-extremal distance is invariant under conformal maps, L is also the
p-extremal distance between gt − d(CR) and gt − d(S) in gt − d(W). This allows
us to find an upper bound on L.

To get this upper bound, we draw two concentric semi-circles C1 and C2,
the first hitting gt − d(CR) on the inside, and the second hitting gt − d(S) on
the outside as in Fig. 1 (this is always possible if R was chosen large
enough). Note that by the hydrodynamic normalization of the map gt − d,
we have an upper bound on the radius of C1, which depends only on R
(this follows for example from Theorem A.11). As is explained in Ahlfors,
this means that the p-extremal distance L satisfies an inequality of the
form L [ log(C(R)/r), where C(R) depends only on our choice of R, and
r is the radius of the inner half-circle C2. But L was at least log(R/e)/2,
implying that r can be made arbitrarily small by choosing d small enough.
It follows that for every e > 0 there exists a d > 0 such that the set
Kt, d :=gt − d(Kt 0Kt − d) is contained in a half-disk of radius e. But then by
the summation rule of capacity a1(Kt) − a1(Kt − d)=a1(Kt, d) [ e2, proving
left-continuity of a1(Kt).

To prove left-continuity of Ut, let d and e be as above, and denote
by gt, d the normalized map gKt, d

associated with the hull Kt, d. It is clearly
sufficient to show that gt, d converges uniformly to the identity as d a 0
(remember that Ut is defined as gt(c(t)) and refer to Fig. 1). To prove this,
we may assume without loss of generality that the set Kt, d is contained
within the disk of radius e centred at the origin, since the claim remains
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valid under translations over the real line. But then Theorem A.11 says that
if |z| \ 2e, then

|gt, d(z) − z| [ C
.

n=1

an(Kt, d)
|z|n [ e C

.

n=1

en

(2e)n=e. (3)

This shows that the map gt, d converges uniformly to the identity. Left-con-
tinuity of Ut follows. In the same way we can prove right-continuity of
a1(Kt) and Ut. L

Theorem 3.2. Let c(t) be parameterized such that a1(Kt)=2t. Then
for all z ¥ H, as long as z is not an element of the growing hull, gt(z) satis-
fies the Löwner differential equation

“

“t
gt(z)=

2
gt(z) − Ut

, g0(z)=z. (4)

Proof. Our proof is based on the proof of Theorem 3.1 and the
Poisson integral formula, which states that the map gt, d satisfies

gt, d(z) − z=
1
p

F
.

−.

Im g−1
t, d(t)

gt, d(z) − t
dt, z ¥ H0Kt, d (5)

while the capacity a1(Kt, d) is given by the integral

a1(Kt, d)=
1
p

F
.

−.

Im g−1
t, d(t) dt. (6)

See Appendix A.4 for more information.
First consider the left-derivative of gt(z). Using the same notations as

in the proof of Theorem 3.1 we can write gt=gt, d p gt − d. We know that gt, d

converges to the identity as d a 0, and that the support of Im g−1
t, d shrinks

to the point Ut. Moreover, using the summation rule of capacity and our
choice of time parameterization, Eq. (6) gives > Im g−1

t, d(t) dt=2pd. Hence
from Eq. (5) we get

lim
d a 0

gt(z) − gt − d(z)
d

=lim
d a 0

1
pd

F
Im g−1

t, d(t)
gt, d(gt − d(z)) − t

dt=
2

gt(z) − Ut
. (7)

In the same way one obtains the right-derivative. L
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3.2. The Solution of the Löwner Equation

In the previous subsection, we started from a continuous path c in
the upper half-plane. We proved that the corresponding conformal maps
satisfy the Löwner equation, driven by a suitably defined continuous func-
tion Ut. In this subsection, we will try to go the other way around. Starting
from a driving function Ut, we will prove that the Löwner equation gener-
ates a (continuous) family of conformal maps gt onto H. The proof follows
Lawler. (33)

So suppose that we have a continuous real-valued function Ut. Con-
sider for some point z ¥ Hb 0{0} the Löwner differential equation

“

“t
gt(z)=

2
gt(z) − Ut

, g0(z)=z. (8)

This equation gives us some immediate information on the behaviour of
gt(z). For instance, taking the imaginary part we obtain

“

“t
Im gt(z)=

− 2 Im gt(z)
(Re gt(z) − Ut)2+(Im gt(z))2 . (9)

This shows that for fixed z ¥ H, “t Im[gt(z)] < 0, and hence that gt(z)
moves towards the real axis. Further, points on the real axis will stay on
the real axis.

For a given point z ¥ Hb 0{0}, the solution of the Löwner equation is
well-defined as long as gt(z) − Ut stays away from zero. This suggests that
we define a time y(z) as the first time y such that lim t ‘ y (gt(z) − Ut)=0,
setting y(z)=. if this never happens. Note that as long as gt(z) − Ut

is bounded away from zero, Eq. (9) shows that the time derivative of
Im[gt(z)] is bounded in absolute value by some constant times Im[gt(z)].
For points z ¥ H this shows that in fact, y(z) must be the first time when
gt(z) hits the real axis. We set

Ht :={z ¥ H : y(z) > t}, Kt :={z ¥ Hb : y(z) [ t}. (10)

Then Ht is the set of points in the upper half-plane for which gt(z) is still
well-defined, and Kt is the closure of its complement, i.e., it is the hull
which is excluded from Ht. Our goal is now to prove the following
theorem.

Theorem 3.3. Let Ut be a continuous real-valued function, and for
every t \ 0 let gt(z) be the solution of the Löwner equation (8). Define the
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set Ht as in (10). Then gt(z) is a conformal map of the domain Ht onto H
which satisfies

gt(z)=z+
2t
z

+O(z−2), z Q .. (11)

Proof. It is easy to see from (8) that gt is analytic on Ht. We will
prove (i) that the map gt is conformal on the domain Ht, (ii) that this map
is of the form (11), and (iii) that gt(Ht)=H.

To prove (i), we have to verify that gt has nonzero derivative on Ht,
and that it is injective. So consider Eq. (8) for times t < y(z). Then the dif-
ferential equation behaves nicely, and we can differentiate with respect to z
to obtain

“

“t
log g −

t(z)=−
2

(gt(z) − Ut)2 . (12)

This gives |“t log g −

t(z)| [ 2/[Im gt(z)]2. But we know that Im[gt(z)] is
decreasing. Hence, if we fix t0 < y(z), then the change in log g −

t(z) is uni-
formly bounded for all times t < t0. It follows that log g −

t0
(z) is well-defined

and bounded and hence, that g −

t(z) is well-defined and nonzero for all
t < y(z).

Next, choose two different points z, w ¥ H and let t < min{y(z), y(w)}.
Then

“

“t
log[gt(z) − gt(w)]=−

2
(gt(z) − Ut)(gt(w) − Ut)

. (13)

It follows that gt(z) ] gt(w) for all t < min{y(z), y(w)}, using a similar
argument as above. We conclude that gt(z) is conformal on the domain Ht.

For the proof of (ii), we note that (i) implies that the map gt(z) can be
expanded around infinity. We can determine the form of the expansion by
integrating the Löwner differential equation from 0 to t. This yields

gt(z) − z=F
t

0

2 ds
gs(z) − Us

. (14)

Consider this equation in the limit z Q .. Then it is easy to see that the
expansion of gt(z) has no terms of quadratic or higher power in z, and no
constant term. The form (11) follows immediately.
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Fig. 2. If the flow of a point z up to a time t0 is described by gt(z), then ht(w) as defined in
the text describes the inverse flow.

Finally, we prove (iii), i.e., we will show that gt(Ht)=H. To see this,
let w be any point in H, and let t0 be a fixed time. Define ht(w) for
0 [ t [ t0 as the solution of the problem

“

“t
ht(w)=−

2
ht(w) − Ut0 − t

, h0(w)=w. (15)

The imaginary part of this equation says that “t Im[ht(w)] > 0 and hence,
that Im[ht(w)] is increasing in time. Since |“tht(w)| [ 2/Im[ht(w)], it
follows that ht(w) is well-defined for all 0 [ t [ t0.

We defined ht(w) such that it describes the inverse of the flow of some
point z ¥ Ht0

under the Löwner evolution (8) (see Fig. 2). To see that this is
indeed the case, suppose that for some t between 0 and t0, ht0 − t(w)=gt(z)
for some z. Then it follows from the differential equation for ht(w), that
gt(z) satisfies Eq. (8). This observation holds for all times t between 0 and t0.
It follows that such a point z exists, and that it is in fact determined by
z=g0(z)=ht0

(w). In other words, for all w ¥ H we have gt0
(z)=w for

some z ¥ Ht0
. This completes the proof. L

We have just proved that a continuous function Ut leads, via the
Löwner evolution equation (8), to a collection of conformal maps
{gt: t \ 0}. These conformal maps are defined on subsets of the upper half-
plane, namely the sets Ht=H0Kt, with Kt a growing hull. At this point we
still don’t know if the maps gt(z) also correspond to a path c(t). But in the
next subsection we shall take Ut to be a scaled Brownian motion, and it is
known (51) that in this case the Löwner evolution does correspond to a path.

3.3. Chordal SLE in the Half-Plane

In the previous subsection we showed that the Löwner equation (8)
driven by a continuous real-valued function generates a set of conformal
maps. Furthermore, these conformal maps may correspond to a path in the
upper half-plane, as is suggested by the conclusions of Section 3.1. Chordal
SLEo in the half-plane is obtained by taking scaled Brownian motion as
the driving process. We give a precise definition in this subsection.
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Let Bt, t ¥ [0, .), be a standard Brownian motion on R, starting from
B0=0, and let o > 0 be a real parameter. For each z ¥ Hb 0{0}, consider the
Löwner differential equation

“

“t
gt(z)=

2

gt(z) − `o Bt

, g0(z)=z. (16)

This has a solution as long as the denominator gt(z) − `o Bt stays away
from zero.

For all z ¥ Hb , just as in the previous subsection, we define y(z) to be
the first time y such that lim t ‘ y (gt(z) − `o Bt)=0, y(z)=. if this never
happens, and we set

Ht :={z ¥ H : y(z) > t}, Kt :={z ¥ Hb : y(z) [ t}. (17)

That is, Ht is the set of points in the upper half-plane for which gt(z) is well-
defined, and Ht=H0Kt. The definition is such that Kt is a hull, while Ht

is a simply-connected domain. We showed in the previous subsection that
for every t \ 0, gt defines a conformal map of Ht onto the upper half-
plane H, that satisfies the normalization lim z Q . (gt(z) − z)=0.

Definition 3.1 (Stochastic Löwner Evolution). The family of
conformal maps {gt: t \ 0} defined through the stochastic Löwner equa-
tion (16) is called chordal SLEo. The sets Kt (17) are the hulls of the
process.

The SLEo process defined through Eq. (16) is called chordal, because
its hulls are growing from a point on the boundary (the origin) to another
point on the boundary (infinity). We will keep using the term chordal for
processes going between two boundary points (and not only for SLE pro-
cesses). Other kinds of processes might for instance grow from a point on
the boundary to a point in the interior of a domain. An example of such a
process is radial SLE, see Section 3.5.

It turns out that the hulls of chordal SLE in fact are the hulls of a
continuous path c(t), that is called the trace of the SLE process. It is
through this trace that the connection with discrete models can be made.
We shall discuss properties of the trace in Section 4, and we will look at the
connection with discrete models in Section 5. The precise definition of the
trace is as follows.
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Definition 3.2 (Trace). The trace c of SLEo is defined by

c(t) :=lim
z Q 0

g−1
t (z+`o Bt) (18)

where the limit is taken from within the upper half-plane.

At this point we would like to make some remarks about the choice of
time parameterization. Chordal SLE is defined such that the capacity of
the hull Kt satisfies a1(Kt)=2t, and this may seem somewhat arbitrary.
But in practice, the choice of time parameterization does not matter for our
calculations. The point is, that in SLE calculations we are usually interested
in expectation values of random variables at the first time when some event
happens, that is, at a stopping time. These expectation values are clearly
independent from the chosen time parameterization (even if we make a
random change of time). For examples of such calculations, see Sections 4.2
and 6.1.

Still, it is interesting to examine how a time-change affects the Löwner
equation. So, let c(t) be an increasing and differentiable function defining a
change of time. Then ĝt :=gc(t)/2 is a collection of conformal transforma-
tions parameterized such that a1(K̂t) :=a1(Kc(t)/2)=c(t). This family of
transformations satisfies the equation

“

“t
ĝt(z)=

d
dt c(t)

ĝt(z) − `k Bc(t)/2

, ĝ0(z)=z. (19)

In particular, if we choose c(t)=2at for some constant a > 0, then the
conformal maps ĝt satisfy

“

“t
1

`a
ĝt(`a z)=

2
1

`a
ĝt(`a z) − `

o
a Bat

,
1

`a
ĝ0(`a z)=z. (20)

But the scaling property of Brownian motion (Appendix B.4) shows that
the driving term of this Löwner equation is again a standard Brownian
motion multiplied by `o. This proves the following lemma.

Lemma 3.4 (Scaling Property of SLEo). If gt are the transfor-
mations of SLEo and a is a positive constant, then the process (t, z) W
ĝt(z) :=a−1/2gat(`a z) has the same distribution as the process (t, z) W gt(z).
Furthermore, the process t W a−1/2Kat has the same distribution as the
process t W Kt.

This lemma is used frequently in SLE calculations. Its significance will
be shown already in the following subsection, where we define the SLEo
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process in an arbitrary simply connected domain. Meanwhile, the strong
Markov property of Brownian motion implies that chordal SLEo has
another basic property, which is referred to as stationarity. Indeed, for any
stopping time y the process `o(Bt+y − By) is itself a standard Brownian
motion multiplied by `o. So if we use this process as a driving term in the
Löwner equation, we will obtain a collection of conformal maps ĝt which is
equal in distribution to the normal SLEo process.

It is not difficult to see that the process ĝt(z) in question is in fact the
process defined by

ĝt(z) :=gt+y(g−1
y (z+`o By)) − `o By. (21)

Indeed, taking the derivative of ĝt(z) with respect to t, we find that this
process satisfies the Löwner equation

“

“t
ĝt(z)=

2

ĝt(z) − `o (Bt+y − By)
, ĝ0(z)=z. (22)

This result establishes the following lemma.

Lemma 3.5 (Stationarity of SLEo). Let gt(z) be an SLEo process
in H, and let y be a stopping time. Define ĝt(z) by (21). Then ĝt has the
same distribution as gt, and it is independent from {gt: t ¥ [0, y]}.

Observe that the process ĝt of this lemma is just the original SLEo

process from the time y onwards, but shifted in such a way that the new
process starts again in the origin. The content of the lemma is that this new
process is the same in distribution as the standard SLEo process, and
independent from the history up to time y. So it is in this sense that the
SLEo process is stationary.

3.4. Chordal SLE in an Arbitrary Domain

Suppose that D e C is a simply connected domain. Then the Riemann
mapping theorem says that there is a conformal map f: D Q H. Now, let
ft be the solution of the Löwner equation (16) with initial condition
f0(z)=f(z) for z ¥ D. Then we will call the process {ft: t \ 0} the SLEo in
D under the map f. The connection with the solution gt of (16), with initial
condition g0(z)=z, is easily established. Obviously we have ft=gt p f,
and if Kt are the hulls associated with gt, then the hulls associated with ft

are f−1(Kt).
Now suppose that we want to consider an SLEo trace that crosses

some domain D from a specified point to another specified point. To be
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definite, let the starting point be a ¥ “D, and let the ending point be b ¥ “D,
a ] b. Then we can find a conformal map f: D Q H such that f(a)=0 and
f(b)=.. The SLEo process from a to b in D under the map f is then
defined as we discussed above, with starting point f(a)=0.

The map f, however, is not determined uniquely. But any other map
f̃ of D onto H that sends a to 0 and b to ., must satisfy f̃(z)=af(z) for
some a > 0 by Theorem A.9. Lemma 3.4 then tells us that the trace of the
SLEo process in D under f̃ is given simply by a linear time-change of the
SLEo process under f. But we explained in the previous subsection that a
time-change does not affect our calculations, and may therefore be ignored.
Hence, in the sequel, we can simply speak of SLE processes in an arbitrary
domain, without mentioning the conformal maps that take these processes
to the upper half-plane.

3.5. Radial SLE

So far we have looked only at chordal Löwner evolution processes,
which grow from one point on the boundary of a domain to another point
on the boundary. One can also study Löwner evolution processes which
grow from a boundary point to a point in the interior of the domain. We
call such processes radial Löwner evolutions. Radial SLEo in the unit disk,
for example, is defined as follows.

Let Bt again be Brownian motion, and o > 0. Set Wt :=exp(i `o Bt),
so that Wt is Brownian motion on the unit circle starting from 1. Then
radial SLEo is defined to be the solution of the Löwner equation

“

“t
gt(z)=gt(z)

Wt+gt(z)
Wt − gt(z)

, g0(z)=z, z ¥ Db . (23)

The solution again exists up to a time y(z) which is defined to be the first
time y such that lim t ‘ y (gt(z) − Wt)=0.

If we set

Ht :={z ¥ D : y(z) > t}, Kt :={z ¥ Db : y(z) [ t}, (24)

then gt is a conformal map of D0Kt=Ht onto D. The maps are in this
case normalized by gt(0)=0 and g −

t(0) > 0. In fact it is easy to see from the
Löwner equation that g −

t(0)=exp(t), and this specifies the time parameter-
ization.

The trace of radial SLEo is defined by c(t) :=lim z Q Wt
g−1

t (z), where
now the limit is to be taken from within the unit disk. The trace goes from
the starting point 1 on the boundary to the origin. By conformal mappings,
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one can likewise define radial SLE in an arbitrary simply connected
domain, growing from a given point on the boundary to a given point in
the interior.

4. PROPERTIES OF SLE

In this section we describe some of the properties of SLE. In particu-
lar, we shall see that the family of conformal maps {gt: t \ 0} that is the
solution of the stochastic Löwner equation (16) does describe a continuous
path. We will look at the properties of this path, and we shall describe the
connection with the hulls {Kt: t \ 0} of the process. To give the reader
an impression of the kind of computations involved, we spell out a few of
the shorter proofs. All of this work was done originally by Rohde and
Schramm. (51) We shall also see that SLE has some special properties in the
cases o=6 ( locality) and o=8/3 (restriction), as was shown in refs. 35
and 42. We end the section by giving the Hausdorff dimensions of the SLE
paths, calculated by Beffara. (11, 12)

4.1. Continuity and Transience

In Section 3.2 we proved that the solution of the Löwner equation is a
family of conformal maps onto the half-plane. We then raised the question
whether these conformal maps describe a continuous path. Rohde and
Schramm (51) proved that for chordal SLEo this is indeed the case, at least
for all o ] 8. The proof by Rohde and Schramm does not work for o=8.
But later, Lawler et al. (40) proved that SLE8 is the scaling limit of the Peano
curve winding around a uniform spanning tree (more details follow in Sec-
tion 5). Thereby, they showed indirectly that the trace is a continuous curve
in the case o=8 as well. More precisely, the following theorem holds.

Theorem 4.1 (Continuity). For all o \ 0 almost surely the limit

c(t) :=lim
z Q 0

g−1
t (z+`o Bt) (25)

exist for every t \ 0, where the limit is taken from within the upper half-
plane. Moreover, almost surely c: [0, .) Q Hb is a continuous path and Ht

is the unbounded connected component of H0c[0, t] for all t \ 0.

In the same paper, Rohde and Schramm also showed that the trace of
SLEo is transient for all o \ 0, that is, lim t Q . |c(t)|=. almost surely. This
proves that the SLE process in the half-plane is indeed a chordal process
growing from 0 to infinity.
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Fig. 3. Simplified impression of SLE in the three different phases. The trace of the SLE
process is shown in black. The union of the black path and the grey areas represents the hull.

4.2. Phases of SLE

The behaviour of the trace of SLEo depends naturally on the value of
the parameter o. It is the purpose of this subsection to point out that we
can discern three different phases in the behaviour of this trace. The two
phase transitions take place at the values o=4 and o=8. A sketch of what
the three different phases look like is given in Fig. 3.

For o ¥ [0, 4] the SLEo trace c is almost surely a simple path, i.e.,
c(s) ] c(t) for all 0 [ t < s. Moreover, the trace a.s. does not hit the real
line but stays in the upper half-plane after time 0. Clearly then, the hulls Kt

of the process coincide with the trace c[0, t].
When o is larger than 4, the trace is no longer simple. In fact, for all

o > 4 we have that every point z ¥ Hb 0{0} a.s. becomes part of the hull in
finite time. This means that every point is either on the trace, or is discon-
nected from infinity by the trace. But as long as o < 8, it can be shown that
the former happens with probability zero. Therefore, for o ¥ (4, 8) we have
a phase where the trace is not dense but does eventually disconnect all
points from infinity. In other words, the trace now intersects both itself and
the real line, and the hulls Kt now consist of the union of the trace c[0, t]
and all bounded components of Hb 0c[0, t].

Finally, when o \ 8 the trace becomes dense in H. In fact, we are then
in a phase where c[0, .)=Hb with probability 1, and the hulls Kt coincide
with the trace c[0, t] again.

The proofs of the properties of SLEo for o ¥ [0, 4] are not too diffi-
cult and illustrate nicely some of the techniques involved in SLE calcula-
tions. For these reasons, we reproduce these proofs from Rohde and
Schramm (51) below. Details of the stochastic methods involved can be
found in Appendix B. Readers who are not so much interested in detailed
proofs may skip directly to Section 4.3.

Lemma 4.2. Let o ¥ [0, 4] and let c be the trace of SLEo. Then
almost surely c[0, .) … H 2 {0}.

Proof. Let 0 < a < b be real and x ¥ [a, b]. Define the process Yx(t)
by Yx(t) :=gt(x) − `o Bt, and let F(x) be the probability that Yx(t) hits b
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before it hits a. Let T denote the first time when Yx(t) hits either of these
points, and let t < T. The stationarity property of SLE, Lemma 3.5, shows
that the process YYx(t)(tŒ) has the same distribution as the process Yx(t+tŒ)
and is independent from {Yx(s): 0 [ s [ t} (set y W t, t W tŒ, and z W gt(x)
− `o Bt in the lemma, and use time homogeneity of Brownian motion). It
follows that

E[1{Yx(T)=b} | Ft]=E[1{YYx(t)(T)=b} | Ft]=F(Yx(t)), (26)

where Ft is the s-field generated by `o Bt up to time t. Thus, if s < t then

E[F(Yx(t)) | Fs]=E[E[1{Yx(T)=b} | Ft] | Fs]

=E[1{Yx(T)=b} | Fs]=F(Yx(s)) (27)

because Fs … Ft, which shows that F(Yx(t)) is a martingale.
Itô’s formula for F(Yx(t)) ( Theorem B.10) is easily derived from the

differential equation for Yx(t),

dYx=
2
Yx

dt − `o dBt. (28)

Since the drift term in Itô’s formula for F(Yx(t)) must be zero at t=0, we
find that F(x) satisfies the differential equation

o

2
Fœ(x)+

2
x

FŒ(x)=0. (29)

The boundary conditions obviously are F(a)=0 and F(b)=1. The solu-
tion is given by

F(x)=
f(x) − f(a)
f(b) − f(a)

(30)

where

f(x)=˛x (o − 4)/o if o ] 4,

log(x) if o=4.
(31)

One can easily verify that this solution satisfies F(x) Q 1 when a a 0 for
o [ 4 (but not for o > 4) and arbitrary b.

Hence, for o [ 4 the process Yx(t) is going to reach . before reaching 0.
The differential equation for Yx(t) shows that Yx(t) changes only slowly
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when Yx(t) is large, and we conclude that almost surely Yx(t) does not
escape to infinity in finite time. It is also clear that YxŒ(t) \ Yx(t) if xŒ > x,
because under the Löwner evolution the order of points on the real line
must be conserved. Therefore, almost surely for every x > 0, Yx(t) is well-
defined for all t \ 0, and Yx(t) ¥ (0, .). It follows that almost surely the
trace c[0, .) does not intersect (0, .). In the same way it can be proved
that the trace does not intersect the negative real line. L

Theorem 4.3. For all o ¥ [0, 4], the trace c of SLEo is almost surely
a simple path.

Proof. Let t2 > t1 > 0. We need to prove that c[0, t1] 5 c[t2, .)
=”. To do so, note that there exists a rational s ¥ (t1, t2) such that
c(s) ¨ R 2 Kt1

, since the capacity is strictly increasing between t1 and t2. In
the following paragraphs we will prove that

c[s, .) 5 (R 2 Ks)={c(s)}. (32)

Suppose for now that this is true, and assume that there is a point z that is
both in c[0, t1] and in c[t2, .). Then clearly z ¥ c[s, .) since s < t2, and
z ¥ R 2 Ks since s > t1. Hence z=c(s) by (32). But then it follows that
c(s)=z ¥ R 2 Kt1

, a contradiction. This proves the theorem, so it only
remains to establish (32).

To prove (32), for fixed s as above consider the process ĝt(z) defined
by

ĝt(z) :=gt+s(g−1
s (z+`o Bs)) − `o Bs. (33)

By stationarity of SLE (Lemma 3.5), this process has the same distribution
as gt(z); we saw in the derivation of the stationarity property that its
driving process is `o(Bt+s − Bs). Let us denote by ĉs(t) the trace corre-
sponding to the maps {ĝt: t \ 0}. Then we have

ĉs(t) :=ĝ−1
t (`o(Bt+s − Bs))=gs(g−1

t+s(`o Bt+s)) − `o Bs

= gs(c(t+s)) − `o Bs (34)

as can be seen from Fig. 4. Applying the map g−1
s to this result gives

c(t+s)=g−1
s (ĉs(t)+`o Bs). (35)

Now, Lemma 4.2 tells us that for every t \ 0, ĉs(t) ¥ H 2 {0}. Hence,
because g−1

s maps H onto Hs=H0Ks, (32) follows. The proof is now
complete. L
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Fig. 4. The definition of the map ĝt(z) depicted graphically.

4.3. Locality and Restriction

We discussed above the two special values of o where SLE undergoes
a phase transition. Two other special values of o are o=6 and o=8/3. At
these values, SLEo has some very specific properties, that will be discussed
in detail below.

4.3.1. The Locality Property of SLE6

Let us start by giving a precise definition of the locality property.
Assume for now that o > 0 is fixed. Suppose that L is a hull in H which
is bounded away from the origin. Let Kt be the hulls of a chordal SLEo

process in H, and let Kg
t be the hulls of a chordal SLEo process in H0L,

both processes going from 0 to .. Denote by TL the first time at which Kt

intersects the set L. Likewise, let Tg
L be the first time when Kg

t intersects L
(note that in this case, Tg

L is the hitting time of an arc on the boundary of
the domain). See Fig. 5 for an illustration comparing the traces of the two
processes in their respective domains.

Chordal SLEo is said to satisfy the locality property if for all hulls L
bounded away from the origin, the distribution of the hulls {Kt: t < TL}
is the same as the distribution of the hulls {Kg

t : t < Tg
L}, modulo a time

re-parameterization. Loosely speaking, suppose that SLEo has the locality
property, and that we are only interested in the process up to the first time
when it hits L. Then it doesn’t matter whether we consider chordal SLEo

from 0 to . in the domain H, or chordal SLEo from 0 to . in the smaller
domain H0L: up to a time-change, these processes are the same. It was

Fig. 5. Comparison of two SLEo processes from 0 to ., in the domain H ( left) and in the
domain H0L (right). If these processes have the same distribution up to the hitting time of the
set L, then we say that SLEo has the locality property.
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Fig. 6. An SLEo process aimed towards an arc I on the boundary of a domain.

first proved in ref. 35 that chordal SLEo has the locality property for o=6,
and for no other values of o. Later, a much simpler proof appeared in
ref. 42. A sketch of the proof with a discussion of some consequences
appears in ref. 33.

So far, we defined the locality property for a chordal process in H, but
it is clear that by conformal invariance we can translate the property to an
arbitrary simply connected domain. It is also true that radial SLE6 has the
same property. We shall not go into this further, but we would like to point
out one particular consequence of the locality property of SLE6.

Suppose that D is a simply connected domain with continuous bound-
ary, and let a, b, and bŒ be three distinct points on the boundary of D.
Denote by I the arc of “D between b and bŒ which does not contain a (see
Fig. 6 for an illustration). Let Kt (respectively K −

t) be the hulls of a chordal
SLE6 process from a to b (respectively bŒ) in D, and let T (respectively TŒ)
be the first time when the process hits I. Then modulo a time-change,
{Kt: t < T} and {K −

t: t < TŒ} have the same distribution. As a consequence,
if you are interested in the behaviour of an SLE6 process up to the first
time when it hits an arc I, then you may choose any point of I as the end-
point for the SLE process without affecting its behaviour.

4.3.2. The Restriction Property of SLE8/3

To define the restriction property, assume that o [ 4 is fixed. Then the
trace c of SLEo is a simple path. Now suppose, as in our discussion of the
locality property above, that L is a hull in the half-plane which is bounded
away from the origin. Let Y be the map defined by Y(z) :=gL(z) − gL(0).
Then Y is the unique conformal map of H0L onto H such that Y(0)=0,
Y(.)=. and YŒ(.)=1. Now suppose that c never hits L. Then we let cg

be the image of c under the map Y, that is cg(t) :=Y(c(t)).
We say that SLEo has the restriction property if for all hulls L that

are bounded away from the origin, conditional on the event {c[0, .) 5 L
=”}, the distribution of cg[0, .) is the same as the distribution of the
trace of a chordal SLEo process in H, modulo a time re-parameterization.
In words, suppose that SLEo has the restriction property. Then the distri-
bution of all paths that are restricted not to hit L, and which are generated
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by SLEo in the half-plane, is the same as the distribution of all paths gen-
erated by SLEo in the domain H0L.

SLE has the restriction property for o=8/3 and for no other values
of o. A proof is given in ref. 42 (a sketch of a proof appears in ref. 33), and
in the same article it was also shown that

P[c[0, .) 5 L=”]=|YŒ(0)|5/8. (36)

Again, the restriction property can be translated into a similar property for
arbitrary domains, and radial SLE8/3 also satisfies the restriction property.
We refer to Lawler et al. (42) and Lawler (33) for more information.

4.4. Hausdorff Dimensions

Consider an SLEo process in the upper half-plane. If o \ 8 the trace
of the process is space-filling, and therefore the Hausdorff dimension of
the set c[0, .) is 2. But for o ¥ (0, 8) the Hausdorff dimension of c[0, .)
is a nontrivial number. Rohde and Schramm (51) showed that its value is
bounded from above by 1+o/8, and the proof that for o ] 4 the Haus-
dorff dimension is in fact 1+o/8 was completed by Beffara. (11, 12) In the
physics literature the Hausdorff dimensions of the curves that are believed
to converge to SLE were predicted by Duplantier and Saleur. (18, 52)

In the case o > 4 the hull of SLEo is not a simple path, and it is
natural to consider also the Hausdorff dimension of the boundary of Kt for
some fixed value of t > 0. Its value is conjectured to be 1+2/o, because
(based on a duality relation derived by Duplantier (18)) it is believed that the
boundary of the hull for o > 4 is described by SLE16/o. The dimension of
the hull boundary is known rigorously only for o=6 (where it is 4/3) and
for o=8 (where it is 5/4). For o=6 this follows from the study of the
‘‘conformal restriction measures’’ in ref. 42, for o=8 this is a consequence
of the strong relation between loop-erased random walks and uniform
spanning trees (40) (Section 5.3).

5. SLE AND DISCRETE MODELS

In this section we take a look at the connection between SLE and
discrete models. The connection is made by defining a path in these discrete
models, which in the scaling limit converges to the trace of a chordal or
radial SLE process. In the first subsection, we describe how this works for
the exploration process of critical percolation, which is known to converge
to SLE6. Then we describe the harmonic explorer and its convergence to
SLE4. In Section 5.3 we consider the loop-erased random walk and the
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Peano curve associated with the uniform spanning tree. These paths converge
to the traces of SLE2 and SLE8 respectively. Section 5.4 is about the con-
jectured connection between self-avoiding walks and SLE8/3. The final two
subsections relate Potts models and O(n)-model to their SLE counterparts.

5.1. Critical Percolation

We define site percolation on the triangular lattice as follows. All ver-
tices of the lattice are independently coloured blue with probability p or
yellow with probability 1 − p. An equivalent, and perhaps more convenient,
viewpoint is to say that we colour all hexagons of the dual lattice blue or
yellow with probabilities p and 1 − p, respectively. It is well-known that
for p [ 1/2, there is almost surely no infinite cluster of connected blue
hexagons, while for p > 1/2 there a.s. exist a unique infinite blue cluster.
This makes p=1/2 the critical point for site percolation on the triangular
lattice. For the remainder of this subsection we assume that we are at this
critical point.

Let us for now restrict ourselves to the half-plane. Suppose that as our
boundary conditions, we colour all hexagons intersecting the negative real line
yellow, and all hexagons intersecting the positive real line blue. All other
hexagons in the half-plane are independently coloured blue or yellow with
equal probabilities. Then there exists a unique path over the edges of the
hexagons, starting in the origin, which separates the cluster of blue hexagons
attached to the positive real half-line from the cluster of yellow hexagons
attached to the negative real half-line. This path is called the chordal explora-
tion process from 0 to . in the half-plane. See Fig. 7 for an illustration.

The exploration process can also be described as the unique path from
the origin such that at each step there is a blue hexagon on the right, and
a yellow hexagon on the left. This path can also be generated dynamically,
as follows. Initially, only the hexagons on the boundary receive a colour.
Then after each step, the exploration process meets a hexagon. If this
hexagon has not yet been coloured, we have to choose whether to make it
blue or yellow, and the exploration process can turn left or right with equal

Fig. 7. Part of the percolation exploration process in the half-plane.
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probabilities. But if the hexagon has already been coloured blue or yellow,
the exploration path is forced to turn left or right, respectively.

Note that in this dynamic formulation it is clear that the trajectory of
the exploration process is determined completely by the colours of the
hexagons in the direct vicinity of the path. Further, it is clear that the tip of
the process can not become trapped, because it is forced to reflect off into
the open if it meets an already coloured hexagon. This suggests that in
the continuum limit, when we send the size of the hexagons to zero, the
exploration process may be described by a Löwner evolution. The only
candidate is SLE6, because only then we have the locality property.

Smirnov (56) proved that in the continuum limit, the exploration process
is conformally invariant. Together with the results on SLE6 developed by
Lawler, Schramm, and Werner, this should prove that the exploration
process converges to the trace of SLE6 in the half-plane (although explicit
proofs linking SLE6 to critical percolation have not yet appeared). Thus,
SLE6 may be used to calculate properties of critical percolation that can be
formulated in terms of the behaviour of the exploration process. Some
examples of how this can be done are described in Section 6.

So far, we have restricted percolation to a half-plane, but we can of
course consider other domains as well. For example, let D be a simply
connected domain with continuous boundary, and let a and b be two
points on the boundary. In an approximation of the domain by hexagons,
colour all hexagons that intersect the arc of “D from a to b in the counter-
clockwise direction blue, and all remaining hexagons intersecting “D
yellow. Then there is a unique exploration process in D which goes from a
to b, and by Smirnov’s result it converges in the scaling limit to a chordal
SLE6 trace in D going from a to b. On that note we end our discussion of
the connection between critical percolation and SLE6.

5.2. The Harmonic Explorer

The harmonic explorer is a random path similar to the exploration
process of critical percolation. It was defined recently by Schramm and
Sheffield as a discrete process that converges to SLE4. (55) To define the
harmonic explorer, consider an approximation of a bounded domain with
hexagons, as in Fig. 8. As we did for critical percolation, we partition the
set of hexagons on the boundary of our domain into two components, and
colour the one component yellow and the other blue. The hexagons in the
interior are uncoloured initially.

The harmonic explorer is a path over the edges of the hexagons that
starts out on the boundary with a blue hexagon on its right and a yellow
hexagon on its left. It turns left when it meets a blue hexagon, and it turns
right when it meets a yellow hexagon. The only difference with thew
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Fig. 8. Left: the initial configuration for the harmonic explorer, with blue hexagons (dark
faces), yellow hexagons (white faces) and uncoloured hexagons (light faces). Right: a part of
the harmonic explorer process. The colour of the marked hexagon is determined as described
in the text.

exploration process of critical percolation is in the way the colour of an as
yet uncoloured hexagon is determined. For the harmonic explorer this is
done as follows.

Suppose that the harmonic explorer meets an uncoloured hexagon (see
Fig. 8). Let f be the function, defined on the faces of the hexagons, that
takes the value 1 on the blue hexagons, the value 0 on the yellow hexagons,
and is discrete harmonic on the uncoloured hexagons. Then the probability
that the hexagon whose colour we want to determine is made blue, is given
by the value of f on this hexagon. Proceeding in this way, we obtain a path
crossing the domain between the two points on the boundary where the
blue and yellow hexagons meet. In the scaling limit this path converges to
the trace of chordal SLE4.

5.3. Loop-Erased Random Walks and Uniform Spanning Trees

In this subsection we consider loop-erased random walks (LERW’s)
and uniform spanning trees (UST’s). We shall define both models first, and
we will point out the close relation between the two. Then we will discuss
the connection with SLE in the scaling limit. Schramm (53) already proved
that the LERW converges to SLE2 under the assumption that the scaling
limit exists and is conformally invariant. In the same work, he also
conjectured the relation between UST’s and SLE8. The final proofs of these
connections were given by Lawler, Schramm, and Werner in ref. 40. Their
proofs hold for general lattices, but for simplicity, we shall restrict our
description here to finite subgraphs of the square grid dZ2 with mesh d > 0.

Suppose that G is a finite connected subgraph of dZ2, let u be a vertex
of G and let V be a collection of vertices of G not containing u. Then the
LERW from u to V in G is defined by taking a simple random walk in G

A Guide to Stochastic Löwner Evolution and Its Applications 1173



from u to V and erasing all its loops in chronological order. More precisely,
if (w(0),..., w(TV)) are the vertices visited by a simple random walk starting
from u and stopped at the first time TV when it visits a vertex in V, then
its loop-erasure (b(0),..., b(T)) is defined as follows. We start by setting
b(0)=w(0). Then for n ¥ N we define inductively: if b(n) ¥ V then T=n
and we are done, and otherwise we set b(n+1)=w(1+max{m [ TV :
w(m)=b(n)}). The path (b(0),..., b(T)) is then a sample of the LERW in
G from u to V.

A spanning tree T in G is a subgraph of G such that every two vertices
of G are connected via a unique simple path in T. A uniform spanning tree
(UST) in G is a spanning tree chosen with the uniform distribution from
all spanning trees in G. It is well-known that the distribution of the unique
simple path connecting two distinct vertices u and v of G in the UST is the
same as that of the LERW from u to {v} in G.

In fact, the connection between LERW’s and UST’s is even stronger.
For suppose that we fix an ordering (v0,..., vn) of the vertices in G. Let
T0={v0} and inductively define Tm+1 as the union of Tm and a LERW from
vm+1 to Tm, Tm+1=Tm if vm+1 ¥ Tm. Then Tn is a UST in G, regardless of the
chosen ordering of the vertices of G. This algorithm for generating UST’s
from LERW’s is known as Wilson’s algorithm. (60) See also refs. 40, 53, and
references therein for more information.

Let us now describe the scaling limit of the LERW and the connection
with SLE. We shall work with a fixed, bounded, simply connected domain D.
Fix the mesh d > 0, and let G be the subgraph of dZ2 consisting of all
vertices and edges that are contained in D. Then the set of all points that
are disconnected from . by G is a discrete approximation DŒ of the
domain D, see Fig. 9, part (a). Suppose that a is a fixed interior point of D
and let u be the vertex of G which is closest to a. Consider the LERW on
dZ2 from u to the set of vertices that are not in G. In the scaling limit, the
time-reversal of this LERW converges to the trace of a radial SLE2 process
in D from “D to a. Here, the starting point of the SLE2 process is defined
by choosing the starting point of the Brownian motion driving the Löwner
evolution on the unit disk uniformly on the unit circle.

The fact that the LERW converges to an SLE2 process proves that the
LERW is conformally invariant in the scaling limit. Because of the close
connection between LERW’s and UST’s, this leads to the conclusion that
the UST has a conformally invariant scaling limit as well. Moreover, we
can define a path associated to the UST, that converges in the scaling limit
to the trace of SLE8. This path is called the UST Peano curve, and can be
defined as we describe below (Fig. 9 provides an illustration).

Consider again the domains D, DŒ and graph G as before. This time,
let b and c be distinct points of “D, and let v and w be distinct vertices of
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Fig. 9. Part (a) shows the discrete approximation (dark shaded region) of a domain. In
part (b), the discrete approximation is shown again, with the graph G in solid lines and the
dual graph G† in dashed lines. The thick lines connect vertices that are identified. In part (c)
we see a spanning tree on G and its dual on G† (thick lines), and the Peano curve winding
between them (thin line).

G on “DŒ closest to b and c, respectively. We denote by I the counter-
clockwise arc from v to w of “DŒ, and identify all vertices of G that are
on I. Now let GŒ be the graph consisting of all edges (and corresponding
vertices) of the lattice dual to dZ2, that intersect edges of G but not I. Then
we define the dual graph G† of G as the union of GŒ and those edges (and
corresponding vertices) outside DŒ needed to connect the vertices of GŒ

outside DŒ via the shortest possible path outside DŒ, see Fig. 9, part (b). On
this dual graph, we identify all vertices that lie outside DŒ.

Now suppose that T is a UST in G. Then there is a dual tree T† in G†,
consisting of all those edges that do not intersect edges of the tree T, see
Fig. 9, part (c). Observe that T† is a UST in G†. The Peano curve is defined
as the curve winding between T and T† on the square lattice with vertices at
the points d

2 Z2+( d

4 , d

4). Note that this curve is space-filling, in that it visits
all vertices of the lattice that are disconnected from . by G 2 G†. In the
scaling limit, the Peano curve defined as above converges to the trace of a
chordal SLE8 process from b to c in D.

5.4. Self-Avoiding Walks

A self-avoiding walk (SAW) of length n on the square lattice dZ2 with
mesh d > 0 is a nearest-neighbour path w=(w(0), w(1),..., w(n)) on the
vertices of the lattice, such that no vertex is visited more than once. In this
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subsection we shall restrict ourselves to SAW’s that start in the origin and
stay in the upper half-plane afterwards. The idea is to define a stochastic
process, called the half-plane infinite SAW, that in the scaling limit d a 0 is
believed to converge to chordal SLE8/3.

Following ref. 41 we write L+
n for the set of all SAW’s w of length n

that start in the origin, and stay above the real line afterwards. For a given
w in L+

n , let Q+
k (w) be the fraction of walks wŒ in L+

n+k whose beginning
is w, i.e., such that wŒ(i)=w(i) for 0 [ i [ n. Define Q+(w) as the limit of
Q+

k (w) as k Q .. Then Q+(w) is roughly the fraction of very long SAW’s
in the upper half-plane whose beginning is w. It was shown by Lawler,
Schramm, and Werner that the limit Q+(w) exists. (41)

Now we can define the half-plane infinite self-avoiding walk as the
stochastic process Xi such that for all w=(0, w(1),..., w(n)) ¥ L+

n ,

P[X0=0, X1=w(1),..., Xn=w(n)]=Q+(w). (37)

We believe that the scaling limit of this process as the mesh d tends to 0
exists and is conformally invariant. By the restriction property the scaling
limit has to be SLE8/3, as pointed out in ref. 41. At this moment it is
unknown how the existence, let alone the conformal invariance, of the
scaling limit could be proved. However, there is very strong numerical evi-
dence for the conformal invariance of the scaling limit of self-avoiding
walks, (27, 28) confirming the SLE predictions of its restriction property.

Lawler et al. (41) also explain how one can define a natural measure on
SAW’s with arbitrary starting points, leading to conjectures relating SAW’s
to chordal and radial SLE8/3 in bounded simply-connected domains. The
article further discusses similar conjectures for self-avoiding polygons, and
predictions for the critical exponents of SAW’s that can be obtained
from SLE. We shall not go into these topics here.

5.5. The Potts Model

So far in this section we discussed relations between SLE at specific values
of o to certain statistical lattice models. The results of SLE however suggest a
further connection to continuous families of models, of which we will discuss the
two most obvious examples in this and the following subsection. This subsection
deals with the q-state Potts model. Below we will show a standard treatment,(10)

which relates the partition sum of the Potts model to an ensemble of multiple
paths on the lattice. In the scaling limit these paths will be the candidates for the
SLE processes. The second example, allowing a similar treatment, is the O(n)
model.This modelwill be discussed in the followingsubsection.

The Potts model has on each site of a lattice a variable sj which can
take values in {1, 2,..., q}. Of these variables only nearest neighbours
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interact such that the energy is − 1 if both variables are in the same state
and 0 otherwise. The canonical partition sum is

Z=C
{s}

exp 1b C
Oj, kP

dsj, sk
2 . (38)

The summation in the exponent is over all nearest-neighbour pairs of sites,
and the external summation over all configurations of the sj. The model is
known to be disordered at high temperatures, and ordered at low tempera-
tures. One of the signatures of order is that the probability that two distant
s-variables are in the same state does not decay to zero with increasing dis-
tance. We are interested in the behaviour at the transition.

In order to make the connection with a path on the lattice, we express
this partition sum in a high-temperature expansion, i.e., in powers of a
parameter which is small when b is small. The first step is to write the
summand as a product:

Z=C
{s}

D
Oj, kP

[1+(eb − 1) dsj, sk
]. (39)

The product can be expanded in terms in which at every edge of the lattice
a choice is made between the two terms 1 and (eb − 1) dsj, sk

. In a graphical
notation we place a bond on every edge of the lattice where the second
term is chosen, see Fig. 10. For each term in the expansion of the product
the summation over the s-variables is trivial: if two sites are connected by
bonds, their respective s-variables take the same value, and are independent
otherwise. As a result the summation over {s} results in a factor q for each
connected component of the graph. Hence

Z= C
graphs

(eb − 1)b qc, (40)

where c is the number of connected components of the graph and b the
number of bonds. This expansion is known by the name of Fortuin–
Kasteleyn (22) cluster model. Note that, while q has been introduced as the
(integer) number of states, in this expansion it can take any value.

Fig. 10. The Potts model in a rectangular domain. On the left we illustrate the graph
decomposition, on the right we have drawn in the corresponding configuration of paths.
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It is convenient to rewrite the graph expansion into an expansion of
paths on a new lattice. The edges of the original lattice correspond to the
vertices of the new lattice. The graphs on the original lattice are rewritten
into polygon decompositions of the new lattice. Every vertex of the new
lattice is separated into two nonintersecting path segments. These path
segments intersect the corresponding edge of the original lattice if and only
if this edge does not carry a bond of the graph, as follows:

As a result of these transformations the new lattice is decomposed into a
collection of nonintersecting paths, as indicated in Fig. 10. Notice that
every component of the original graph is surrounded by one of these closed
paths, but also the closed circuits of the graph are inscribed by these paths.
By Euler’s relation the number of components c of the original graph can
be expressed in the number of bonds b, the total number of sites N and the
number of polygons p: c=(N − b+p)/2. An alternative expression for the
partition sum is then

Z= C
graphs

1eb − 1

`q
2b

q (N+p)/2. (41)

At the critical point bc the relation exp(bc)=1+`q holds, so that the
partition sum simplifies.

We will now consider this model at the critical point on a rectangular
domain. The lattice approximation of this domain is chosen such that the
lower-left corner of the rectangle coincides with a site of the lattice, while
the upper-right corner coincides with a site of the dual lattice. The sides
of the rectangle are parallel to the edges of the lattice, as in Fig. 10. We
choose as boundary condition that all edges that are contained in the left
and lower sides of the rectangle carry bonds, and all edges that intersect
the right and upper sides perpendicularly carry no bonds. For the spin
variables this means that all the spins on the left and lower sides are in the
same state, while all other spins are unconstrained.

In such an arrangement the diagrams in (41) include one path from the
lower-right to the upper-left corner. All further paths are closed polygons,
see Fig. 10. We take the scaling limit by covering the same domain with a
finer and finer mesh. It is believed (51) that in the scaling limit the measure
on the paths approaches that of chordal SLEo traces. From, e.g., the
Hausdorff dimension (12, 52) the relation between o and q is

q=2+2 cos(8p/o) (42)

1178 Kager and Nienhuis



where 4 [ o [ 8. Only in a few cases this relation between SLEo and the
Potts partition sum has been made rigorous. For instance, in the limit
q Q 0, the graph expansion reduces to the uniform spanning tree, which has
SLE8 as its scaling limit.

5.6. The O(n) Model

We now turn to the O(n) model, which is another well-known model
where a high-temperature expansion results in a sum over paths. Here
the dynamic variables are n-component vectors of a fixed length, and the
Hamiltonian is invariant under rotations in the n-dimensional space. The
simplest high-temperature expansion is obtained when the Boltzmann
weight is chosen as

D
Oj, kP

(1+xsi · sj), (43)

where the product is over nearest neighbours on a hexagonal lattice. The
partition sum is obtained by integrating this expression over the directions
of the spin vectors. Like for the Potts model one can expand the product
and do the bookkeeping of the terms by means of graphs. In each factor
in (43) the choice of the second term is indicated by a bond. Then the
graphs that survive the integration over the spin variables have only even
vertices, i.e., on the hexagonal lattice vertices with zero or two bonds. As
a result the graphs consist of paths on the lattice. In a well-chosen nor-
malization of the measure and the length of the spins, the partition sum is a
sum over even graphs

Z= C
graphs

xLnM, (44)

where M is the number of closed loops, and L their combined length. Note
that this expression for the partition sum is well-defined also when the
number of spin components n is not integer. It is known (9, 45) that the criti-
cal point is at xc=[2+(2 − n)1/2]−1/2 for 0 [ n [ 2. When x is larger that
this critical value, the model also shows critical behaviour.

Consider now this model on a bounded domain, and take a correla-
tion function between two spins on the boundary. The diagrams that
contribute to this function contain one path between the two specified
boundary points and any number of closed polygons in the interior. We
conjecture that at the critical value of x in the scaling limit the measure on
the paths between the two boundary spins approaches that of chordal
SLEo for n=−2 cos(4p/o) and 8/3 [ o [ 4. For larger values of x, the
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scaling limit would again be SLEo, with the same relation between o and n,
but now with 4 [ o [ 8.

To conclude this section, we remark that the same partition sum (44)
can also be viewed as the partition sum of a dilute Potts model on the
triangular lattice, described in ref. 47. In this variant of the Potts model the
spins take values in {0, 1, 2,..., q}. The model is symmetric under permuta-
tions of the q positive values. The name dilute comes from the interpreta-
tion of the neutral value 0 as a vacant site. If neighbouring sites take dif-
ferent values, then one of them takes the value 0. The Boltzmann weight is
a product over the elementary triangles of weights that depend on the three
sites at the corners of the triangle. We take this weight to be 1 when all
three sites are in the same state, vacant or otherwise. Triangles with one or
two vacant sites have weights xy and x/y, respectively. The partition sum
can be expanded in terms of domain walls between sites of different values.
This expansion takes the form of (44) for y12=q=n2, which is the locus of
the phase transition between an ordered phase and a disordered phase.
Within this locus, the region with x > xc is a second-order transition. In the
regime x < xc the transition is discontinuous, and the position x=xc sepa-
rates the two regimes and is called the tricritical point. When q=x=1 the
site percolation problem on the triangular lattice is recovered, which is
known to converge to SLE6 in the scaling limit.

6. SLE COMPUTATIONS AND RESULTS

In this section we discuss some of the results that have been obtained
from calculations involving SLE processes. Our aim in this section is not
only to provide an overview of these results, but also to give an impression
of the typical SLE computations involved, using techniques from stochastic
calculus and conformal mapping theory.

This section is organized as follows. In the first subsection we discuss
several SLE calculations independently from their connection with other
models. The results we obtain will be key ingredients for further calcula-
tions. The second subsection gives a brief overview of how SLE can be
applied to calculate the intersection exponents of Brownian motion.
Finally, we will discuss results on critical percolation that have been
obtained from its connection with SLE6.

6.1. Several SLE Calculations

The purpose of this subsection is to explain how some typical proba-
bilities and corresponding exponents of events involving chordal SLE pro-
cesses can be calculated. The results we find in this subsection are for whole

1180 Kager and Nienhuis



Fig. 11. An SLE process crossing a rectangle, and its translation to the upper half-plane.
The darker grey areas represent the hulls of the processes.

ranges of o, and might therefore have applications in various statistical
models. Some typical applications of the results for o=6 will be shown in
the following subsections.

6.1.1. The One-Sided Crossing Exponent

Consider a chordal SLEo process inside the rectangle RL :=(0, L) ×
(0, ip), which goes from ip to L. If o > 4 this process will at some random
time y hit the right edge [L, L+ip] of the rectangle, as in Fig. 11. Suppose
that E denotes the event that up to this time y, the SLE process has not hit
the lower edge of the rectangle. Then the following holds.

Theorem 6.1. The SLEo process as described above satisfies, for
o > 4,

P[E] £ exp 5−11 −
4
o
2 L6 as L Q ., (45)

where £ indicates that each side is bounded by some constant times the
other side.

Proof. The proof we present here is a simplification of the proof of
a more general result which appears in ref. 35 and which we shall discuss
below. To prove the theorem, the problem is first translated to the upper
half-plane. So, let Y: RL Q H be the conformal map such that Y(0)=1,
Y(L)=. and Y(L+ip)=0. Then the number t :=Y(ip) ¥ (0, 1) is
determined uniquely. This map is just the map of Corollary A.14 in
Appendix A.5, and from this we know that t ‘ 1 as we send L to infinity.

Let Kt be the hulls of a chordal SLEo process in the upper half-plane,
which is translated over the distance t to make it start in t, and let c(t)
denote the trace of the process. Set

T0 :=inf{t \ 0 : c(t) ¥ ( − ., 0]}; (46)

T1 :=inf{t \ 0 : c(t) ¥ [1, .)}; (47)

T :=min{T0, T1}. (48)
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Then T0 corresponds to the time y when the process first crosses the rec-
tangle, and T1 corresponds to the first time at which the process hits the
bottom edge of the rectangle. Hence, the event E of the theorem translates
to the event {T0 < T1}. Refer to Fig. 11 for an illustration.

Now we are going to define a process which allows us to determine
whether the event {T0 < T1} or its complement occurs. A good candidate
for such a process is the process Zt given by

Zt :=
Wt − gt(0)

gt(1) − gt(0)
, 1 − Zt=

gt(1) − Wt

gt(1) − gt(0)
(49)

where Wt denotes the driving process of the Löwner evolution, i.e., Wt is
Brownian motion multiplied by `o, and W0=t.

Indeed, at time T either the point 0 or the point 1 becomes part of
the hull. In the first case, lim t ‘ T Zt=0 because lim t ‘ T (gt(0) − Wt)=0,
whereas in the second case lim t ‘ T Zt=1, since lim t ‘ T (gt(1) − Wt)=0. It is
further clear that for all t < T, Wt ¥ (gt(0), gt(1)), implying that Zt ¥ (0, 1)
for all t < T. This means that the stopping time T conveniently translates
into a stopping time for Zt, namely into the first time when Zt hits 0 or 1.
The value of Zt at this stopping time tells us whether the event {T0 < T1}
occurs.

We now derive the differential equation for Zt, using stochastic cal-
culus. First observe that

d[Wt − gt(0)]=dWt −
2 dt

gt(0) − Wt
, (50)

d[gt(1) − gt(0)]=
2 dt

gt(1) − Wt
−

2 dt
gt(0) − Wt

. (51)

Therefore, Itô’s formula ( Theorem B.11) tells us that Zt satisfies

dZt=
2 dt

(gt(1) − gt(0))2
1gt(1) − gt(0)

Wt − gt(0)
−5Wt − gt(0)

gt(1) − Wt
+162−

dWt

gt(1) − gt(0)

=
2 dt

(gt(1) − gt(0))2
1 1

Zt
−

1
1 − Zt

2−
dWt

gt(1) − gt(0)
. (52)

If we now re-parameterize time by introducing the new time parameter

s=s(t) :=F
t

0

dt
(gt(1) − gt(0))2 for t < T, (53)
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with the inverse t(s), then it is clear that the process Z̃s :=Zt(s) satisfies

dZ̃s=dXs+1 2
Z̃s

−
2

1 − Z̃s

2 ds=dXs+
2(1 − 2Z̃s)
Z̃s(1 − Z̃s)

ds, (54)

where Xs has the same distribution as the process Wt, i.e., it is a Brownian
motion multiplied by the factor `o and starts in t ( Theorem B.12).

From the above calculation we conclude that the process Z̃s is a time-
homogeneous Markov process. As we explained earlier, we are interested in
the value of this process at the stopping time s(T) :=lim t ‘ T s(t), which is
the first time when Z̃s hits 0 or 1. To be more precise, we want to calculate

f(t) :=E[1{Z̃s(T)=0} | Z̃0=t] (55)

where we take the expectation with respect to the Markov process started
from Z̃0=t. Observe that the event {Z̃s(T)=0} is equivalent to the event
{T0 < T1}.

Since Z̃s is a time-homogeneous Markov process, the process Ys :=
f(Z̃s) (conditioned on s < s(T)) is a martingale with respect to the
Brownian motion ( Theorem B.7). Hence, the drift term in its Itô formula
must vanish at s=0. It follows that f(t) must satisfy the differential
equation

o

2
t(1 − t) fœ(t)+2(1 − 2t) fŒ(t)=0. (56)

The boundary conditions are clearly given by f(0)=1 and f(1)=0. The
solution can be written as

f(t)=
21 − 8

o C( 3
2 − 4

o)

`p C(2 − 4
o)

(1 − t)1 − 4
o

2F1
11 −

4
o

,
4
o

; 2 −
4
o

; 1 − t2 . (57)

For critical percolation (o=6) this is Cardy’s formula. (15) Note that f(t)
is exactly the probability P[E], and that the relation between t and L is
given by the conformal mapping of Corollary A.14. Hence, we have basi-
cally found the probability P[E] as a function of L. The asymptotic
behaviour follows from 1 − t=exp[ − L+O(1)] (Corollary A.14) and the
observation that f(t)(1 − t)4/o − 1 is bounded from above and below by
some constants when t ‘ 1 (consult, e.g., ref. 48 for more information on
the behaviour of the hypergeometric function). L

We can generalize the theorem in the following way. Consider again
an SLEo process crossing the rectangle RL from ip to L. On the event E
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the trace c has crossed the rectangle without hitting the bottom edge. So
conditional on this event, the p-extremal distance between [0, ip] and
[L, L+ip] in RL 0Ky is well-defined. Let us call this p-extremal distance L.
Then one can prove the following generalization of Theorem 6.1.

Theorem 6.2. For any l \ 0 and o > 4,

E[1E e−lL] £ exp[− u(o, l) L] as L Q ., (58)

where

u(o, l)=l+
o − 4+`(o − 4)2+16ol

2o
. (59)

The exponent u(o, l) is called the one-sided crossing exponent,
because it measures the extremal distance on one side of an SLE process
crossing a rectangle. Observe that u(o, l) reduces to the exponent 1 − 4/o

for l=0 as it should, because in this case Theorem 6.2 is completely anal-
ogous to Theorem 6.1. The derivation of the one-sided crossing exponent
in ref. 35 is rather involved, so we give only a sketch of the proof here.

Sketch of the Proof of Theorem 6.2. We use the same notations as
in the proof of Theorem 6.1. Suppose that we define the conformal maps
ft(z) for t < T by

ft(z)=
gt(z) − gt(0)
gt(1) − gt(0)

. (60)

This is a renormalized version of gt that fixes the points 0, 1 and .. Now
turn back to Fig. 11 once more, and let MT :=sup{KT 5 R}. If we set
NT :=fT(MT) then it should be clear from conformal invariance that the
p-extremal distance L just translates into the p-extremal distance between
the intervals ( − ., 0] and [NT, 1] in the upper half-plane.

By Corollary A.14 in Appendix A.5, this p-extremal distance satisfies

L=−log[1 − NT]+O(1) (61)

and it follows that we have to determine the expectation value of the
random variable (1 − NT)l on the event E. Set x :=1 − t. Then we claim
that the value of (1 − NT) is comparable to xf −

T(1). This can be made more
precise, see ref. 35 for the details. It follows that it is sufficient to calculate
the expectation value of 1E f −

T(1)l.
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The calculation proceeds by setting as :=log f −

t(s)(1) for s < s(T),
where the time re-parameterization is the same as in the proof of
Theorem 6.1. With Itô’s formula one can then calculate “sas, which turns
out to depend only on Z̃s. Therefore, (Z̃s, as) is a two-dimensional time-
homogeneous Markov process. So if we set

y(t, v) :=E[1{Z̃s(T)=0} elas(T) | Z̃0=t, a0=v], (62)

then y(Z̃s, as) is a martingale, and y(t, 0) is the expectation value we are
trying to calculate. Itô’s formula again yields a differential equation for
y(t, v), and this equation can be solved to find the value of the one-sided
crossing exponent. L

6.1.2. The Annulus Crossing Exponent
There is an analogue of the one-sided crossing exponent for radial

SLE, which we shall discuss only briefly here. The setup is as follows. We
consider radial SLEo for any o > 0, and set At :=“D0Kt. Then the set At

is either a piece of arc of the unit circle, or At=”. Let r > 0 and let T(r)
be the first time when the SLE process hits the circle {z: |z|=r}. Denote by
E the event that AT(r) is nonempty. On the event E, let L be the p-extremal
distance between the circles {z: |z|=1} and {z: |z|=r} in D0KT(r), see
Fig. 12.

Theorem 6.3. For all l > 0 and o > 0,

E[1E e−lL] £ r−n(o, l) as r a 0, (63)

where

n(o, l)=
8l+o − 4+`(o − 4)2+16ol

16
. (64)

We call n(o, l) the annulus crossing exponent of SLEo. A detailed
proof of the theorem can be found in ref. 36. It proceeds along the same
lines as the proof of the one-sided crossing exponent.

Fig. 12. An SLE process crossing an annulus.
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6.1.3. Left-Passage Probability of SLE
So far, we have considered several crossing events of SLE processes.

A different kind of event, namely the event that the trace of SLE passes to
the left of a given point z0, was studied by Schramm in ref. 54. We shall
reproduce his computation of the probability of this event below.

Theorem 6.4. Let o ¥ [0, 8) and z0=x0+iy0 ¥ H. Suppose that E
is the event that the trace c of chordal SLEo passes to the left of z0. Then

P[E]=
1
2
+

C( 4
o)

`p C(8 − o

2o
)

2F1
11

2
,

4
o

;
3
2

; −
x2

0

y2
0

2 x0

y0
. (65)

Proof. Define Xt :=Re gt(z0) − `o Bt, Yt :=Im gt(z0) and set Zt :=
Xt/Yt. As before, we let y(z0) be the first time when the point z0 is in the
hull of SLEo (for o [ 4 this never happens, so then y(z0)=.). We con-
sider c up to the time y(z0) only.

Suppose that w(z0, t) is the harmonic measure of the union of [0, .)
and the right-hand side of c[0, t) at the point z0 in the domain Ht=H0Kt.
Then on the event E, i.e., when c is to the left of z0, w(z0, t) tends to 1
when t ‘ y(z0). To see this, note that in this limit a Brownian motion
started from z0 is certain to first exit the domain Ht through the union
of [0, .) and the right-hand side of c[0, t), see Fig. 13. By conformal
invariance of harmonic measure, it follows that the harmonic measure of
[`o Bt, .) at the point gt(z0) with respect to H tends to 1 when t ‘ y(z0).
Therefore, lim t ‘ y(z0) Zt=+. if and only if c is to the left of z0. In the same
way, we can prove that lim t ‘ y(z0) Zt=−. if and only if c is to the right
of z0. Meanwhile, it is clear that for all t < y(z0), Zt is finite.

Now let us look at the differential equation satisfied by Zt. To derive
it, note first of all that dXt and dYt are given simply by taking the real and
imaginary parts of Löwner’s equation. If we then apply Itô’s formula we
find

dZt=
4Zt

Y2
t (1+Z2

t )
dt −

`o

Yt

dBt. (66)

Fig. 13. Two SLE traces passing to the left and right, respectively, of a given point z0.
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If we now define u(t) :=> t
0 Y−2

s ds and Z̃u :=Zt(u), then

dZ̃u=
4Z̃u

1+Z̃2
u

du − `o dB̃u (67)

where B̃u is again standard Brownian motion ( Theorem B.12). It follows
that Z̃u is a time-homogeneous Markov process. Furthermore, it is clear
from the differential equation that Z̃u does not become infinite in finite
time. Therefore, we are interested in the probability that Z̃u Q +. when
u Q ..

Now let a < b be some real numbers, and define

ha, b(x) :=P[Z̃u hits b before a | Z̃0=x]. (68)

Then the process ha, b(Z̃u) is a martingale, and so the drift term in its Itô
formula must vanish. At u=0 this gives us

o

2
h'

a, b(x)+
4x

1+x2 h −

a, b(x)=0, ha, b(a)=0, ha, b(b)=1. (69)

This has the unique solution

ha, b(x)=
f(x) − f(a)
f(b) − f(a)

, f(x)=2F1
11

2
,

4
o

;
3
2

; − x22 x. (70)

The probability P[E] is just ha, b(x0/y0) in the limit a Q − ., b Q +..
This limit exists, since the limits limx Q ± . f(x) exist and are finite (see, for
example, 15.3.4 in ref. 48). The limit values determine the constants in the
theorem, and we are done. L

6.2. Intersection Exponents of Planar Brownian Motion

One of the first successes of SLE was the determination of the inter-
section exponents of planar Brownian motion. One way of defining these
exponents is as follows (see ref. 34, which also presents alternative defini-
tions). Let k \ 2 and p1,..., pk be positive integers. For each j ¥ {1,..., k},
start pj planar Brownian motions from the point (0, j). Denote by B j

t the
union of the traces of these pj Brownian motions up to time t. Then we can
define an exponent t(p1,..., pk) by

P[-i ] j ¥ {1,..., k}, B i
t 5 B j

t=”] £ (`t)−t(p1,..., pk) (71)

when t Q .. The exponent t(p1,..., pk) is called the intersection exponent
between k packets of p1,..., pk Brownian motions.
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If we further require that the Brownian motions stay in the upper half-
plane, we get different exponents t̃(p1,..., pk) defined by

P[-i ] j ¥ {1,..., k}, B i
t 5 B j

t=” and B i
t … H] £ (`t)−t̃(p1,..., pk) (72)

when t Q .. We could also condition on the event that the Brownian
motions stay in the upper half-plane. The corresponding exponents are
t̂(p1,..., pk). They are related to the previous half-plane exponents by

t̂(p1,..., pk)=t̃(p1,..., pk) − (p1+ · · · +pk), (73)

since the probability that a Brownian motion started in the half-plane stays
in the half-plane up to time t decays like t−1/2.

Duplantier and Kwon (19) predicted the values of the intersection
exponents t(p1,..., pk) and t̂(p1,..., pk) in the case where all pi are equal
to 1. In a series of papers, (35–38) Lawler, Schramm, and Werner confirmed
these predictions rigorously, and generalized them. Here, we will only give
an impression of the arguments used in the first paper, (35) and then we will
summarize the main conclusions of the whole series.

6.2.1. Half-Plane Exponents

In the aforementioned article by Lawler and Werner (34) it is shown
how the definition of the Brownian intersection exponents can be extended
in a natural way. This leads to the definition of the exponents t̃(l1,..., lk)
for all k \ 1 and all nonnegative real numbers l1,..., lk, and of the expo-
nents t(l1,..., lk) for all k \ 2 and nonnegative real numbers l1,..., lk, at
least two of which must be at least 1.

Furthermore, the article shows how the exponents t̃(l+, 1, l− ) and
t̃(1, l) can be characterized in terms of Brownian excursions (see Appendix B.4
and refs. 34 and 35). This characterization proceeds as follows. Let RL be
the rectangle (0, L) × (0, ip), and denote by w the path of a Brownian
excursion in RL. Let A be the event that the Brownian excursion crosses
the rectangle from the left to the right. On this event, let D+ and D− be the
domains remaining above and below w in RL 0w, respectively, and let L+

and L− be the p-extremal distances between the left and right edges of the
rectangle in these domains. We refer to Fig. 14 for an illustration.

By symmetry, the distributions of L+ and L− are the same. The
exponent t̃(1, l) is characterized by

EB[1A e−lL+]=EB[1A e−lL− ] £ e−t̃(1, l) L as L Q . (74)
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Fig. 14. An SLE6 trace c and a Brownian excursion w crossing a rectangle.

where EB is used to indicate expectation with respect to the Brownian
excursion measure. Likewise, t̃(l+, 1, l− ) is characterized by

EB[1A e−l+L+e−l − L− ] £ e−t̃(l+, 1, l − ) L as L Q .. (75)

Another major result from ref. 34 is the theorem below, which gives
the so-called cascade relations between the Brownian intersection expo-
nents. Together with an analysis of the asymptotic behaviour of the expo-
nents ( Theorems 11 and 12 in ref. 34), these relations show that it is suffi-
cient to determine the exponents t(1, 1, l), t̃(1, l) and t̃(l, 1, l) for l \ 0
to know all the intersection exponents. In this article, we shall only explain
how the exponent t̃(1, l) was determined in ref. 35 using SLE.

Theorem 6.5. The exponents t̃(l1,..., lk) and t(l1,..., lk) are
invariant under permutations of their arguments. Moreover, they satisfy
the following cascade relations:

t̃(l1,..., lk)=t̃(l1,..., lj − 1, t̃(lj,..., lk)); (76)

t(l1,..., lk)=t(l1,..., lj − 1, t̃(lj,..., lk)). (77)

We are now ready to describe how the exponent t̃(1, l) can be com-
puted. To do so, suppose that we add an SLE6 process from ip to L to the
same rectangle RL in which we had the Brownian excursion w. In what
follows, it is crucial that this process has the locality property. In our
present setup, this implies that as long as the SLE6 trace does not hit w, it
doesn’t matter whether we regard it as an SLE6 in the domain RL or in the
domain D+. Since SLEo has this property only for o=6, the following
argument works only for this special value of o.

Let us denote by c the trace of the SLE6 process up to the first time
when it hits [L, L+ip], and let E be the event that c is disjoint from w and
that w crosses the rectangle from left to right. See Fig. 14. On the event E,
the p-extremal distance between [0, ip] and [L, L+ip] in the domain
between c and w is well-defined. We call this p-extremal distance L. To
obtain the value of t̃(1, l), our strategy is to express the asymptotic behav-
iour of f(L)=E[1E exp(−lL)] in two different ways.
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On the one hand, when w is given, 1E exp(−lL) is comparable to
exp[ − u(6, l) L+] by Theorem 6.2. We therefore get

f(L) £ EB[1A e−u(6, l) L+] £ e−t̃(1, u(6, l)) L. (78)

On the other hand, when c is given, the distributions of L and L− are the
same by the conformal invariance of the Brownian excursion. But also,
given L+, the probability of the event E is comparable to exp(−L+/3) by
Theorem 6.1. Therefore

f(L) £ EB[1A e−L+/3e−lL− ] £ e−t̃(1/3, 1, l) L. (79)

By the cascade relations, t̃(1/3, 1, l)=t̃(1, t̃(1/3, l)). Hence, comparing
the two results we obtain

t̃(1/3, l)=u(6, l)=
6l+1+`1+24l

6
(80)

since t̃(1, l) is strictly increasing in l. Finally, this result gives us for
example t̃(1, l), because t̃(1/3, 1/3)=1, and then the cascade relations
give

t̃(1, l)=t̃(t̃(1/3, 1/3), l)=t̃(1/3, t̃(1/3, l)). (81)

6.2.2. Summary of Results

As we mentioned before, the series of papers by Lawler et al. (35–38) led
to the determination of all Brownian intersection exponents we defined
above. We state their conclusions as a series of theorems.

Theorem 6.6. For all integers k \ 2 and all l1,..., lk \ 0,

t̃(l1,..., lk)=
(`1+24l1+ · · · +`1+24lk − (k − 1))2 − 1

24
. (82)

Theorem 6.7. For all integers k \ 2 and all l1,..., lk \ 0, at least
two of which are at least 1,

t(l1,..., lk)=
(`1+24l1+ · · · +`1+24lk − k)2 − 4

48
. (83)
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Theorem 6.8. For all integers k \ 2 and all l \ 0,

t(k, l)=
(`1+24k+`1+24l − 2)2 − 4

48
. (84)

By earlier work of Lawler, (30–32) it is known that some of these expo-
nents are related to the Hausdorff dimensions of special subsets of the
Brownian paths. Indeed, suppose that we denote by B[0, 1] the trace of
a planar Brownian motion up to time 1. Then the Hausdorff dimension
of its frontier (the boundary of the unbounded connected component of
C0B[0, 1]), is 2 − t(2, 0)=4/3. The Hausdorff dimension of the set
of cut points (those points z such that B[0, 1]0{z} is disconnected) is
2 − t(1, 1)=3/4. Finally, the set of pioneer points of B[0, 1] (those points
z such that for some t ¥ [0, 1], z=Bt is in the frontier of B[0, 1]) has
Hausdorff dimension 2 − t(1, 0)=7/4. This completes our overview of the
SLE results for Brownian motion.

6.3. Results on Critical Percolation

The connection between SLE6 and critical site percolation on the
triangular lattice can be used to verify rigorously the values of certain per-
colation exponents. In this subsection we review how for example the multi-
arm exponents for percolation can be calculated from the one-sided cross-
ing exponent and the annulus crossing exponent of SLE6. Predictions of
the values of these exponents have appeared in several places in the physics
literature, see, e.g., ref. 17 and references therein. In this section we also
describe Schramm’s left-passage probability for percolation. This is an
example of a result that was unknown before the introduction of SLE.

6.3.1. Half-Plane Exponents

Consider critical site percolation on the triangular lattice with fixed
mesh. Let A+(r, R) be a discrete approximation by hexagons of the semi-
annulus {z: r < |z| < R, Im z > 0}, and denote by f+

k (r, R) the probability
that there exist k disjoint crossings of arbitrary colours from the inner
circle to the outer circle in A+(r, R). By a crossing we mean a sequence
of distinct connected hexagons, all in the same colour, whose first and
last hexagons are adjacent to a hexagon intersecting the inner and outer
circle, respectively. Obviously, r has to be large enough if the definition of
f+

k (r, R) is to make sense, i.e., r > const(k).
It is well-known that the probability f+

k (r, R) does not depend on the
choice of colours of the different crossings. The reason for this is that one
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can always flip the colours of crossings without changing probabilities. To
do so, one can start by considering the clockwise-most crossing. If desired,
its colour can be flipped by flipping the colours of all hexagons. Then one
proceeds by each time considering the clockwise-most crossing to the left
of the previous one. If desired, its colour can be flipped by flipping the
colours of all hexagons to the left of this previous crossing. In the end one
obtains a configuration with all crossings in the desired colours, without
changing probabilities. In particular, we can take f+

k (r, R) to be the prob-
ability of k crossings of alternating colours.

We are now ready to make the connection with SLE. Indeed, suppose
that we colour all hexagons that intersect the boundary of the semi-annulus
blue if they are on the counter-clockwise arc from − r to R, and yellow if
they are on the clockwise arc from − r to R. Then the probability f+

k (r, R)
is exactly the probability that the exploration process from − r to R makes
k crossings before it hits the interval [r, R]. By Smirnov’s result, this
translates in the scaling limit into the probability that a chordal SLE6

process from − r to R in the semi-annulus makes k crossings before it hits
the interval [r, R], see Fig. 15.

It is more convenient now to map the problem to a rectangle using the
logarithmic map. Suppose that g+

k (L) denotes the probability that an SLE6

trace from ip to L in the rectangle RL :=(0, L) × (0, ip) makes k horizontal
crossings before it hits the bottom. Then, by conformal invariance, we want
to determine g+

k (L) for L=log(R/r). For k=1 Theorem 6.1 immediately
gives g+

1 (L) £ exp(−L/3). Exponents for larger k can be determined using
Theorem 6.2.

Indeed, let T be the time at which the SLE6 process has crossed the
rectangle for the first time, and let E be the event that up to time T the
process has not hit the bottom. Then the process still has to make k − 1
crossings in the domain which is left below this first crossing. Hence, if L
denotes the p-extremal distance between the left and right edges in this
remaining domain, we have

g+
k (L)=E[1E g+

k − 1(L)]. (85)

Fig. 15. An SLE6 process which crosses a semi-annulus three times, and the equivalent
process in a rectangle. The thick part of the boundary is the part coloured blue.
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It is now clear from g+
1 (L) £ exp(−L/3) and Theorem 6.2 that g+

k (L) £

exp(−v+
k L) for all k \ 1 and some v+

k , and that the numbers v+
k can be

determined recursively.
In terms of the one-sided crossing exponent, the recursion formula for

the v+
k reads v+

k =u(6, v+
k − 1). It follows that

v+
k =

k(k+1)
6

. (86)

Returning to the case of discrete percolation in the semi-annulus, this result
implies that

f+
k (r, R) £ R−k(k+1)/6 when R Q .. (87)

To make this transition to discrete percolation completely rigorous some
more work is required. We refer to ref. 57 for more details. To complete
the discussion, we finally note that for odd k, f+

k (r, R) is also the proba-
bility that there exist j=(k+1)/2 disjoint blue clusters crossing the semi-
annulus.

6.3.2. Plane Exponents

We now turn to the planar case. Suppose that A(r, R) is an approxi-
mation of the full annulus {z: r < |z| < R} by hexagons, where r is again
assumed to be large enough. We can define an exploration process in this
annulus as follows. We colour all hexagons intersecting the inner circle
blue. The exploration process starts at R with a blue hexagon on its right,
and a yellow hexagon on its left. Each time the exploration process hits a
hexagon on the outer circle that was not visited before, we look at the
argument of the tip of the trajectory at that time (where the argument is
determined continuously, so that it makes no jumps after completing
a circle). If the argument is positive, the hexagon on the boundary is
coloured blue, and otherwise it is coloured yellow.

When the exploration process described above first hits the inner
circle, it defines unambiguously a clockwise-most blue crossing of the
annulus and a counter-clockwise-most yellow crossing, such that the point
R lies between them. Moreover, it can be seen easily that afterwards, the
exploration process continues like a chordal process in the remaining
domain between these two crossings, where the outer circle may now be
assumed to be coloured yellow. This remaining domain is equivalent to
a semi-annulus. Therefore, the probability that the process crosses this
remaining domain k − 2 times before it disconnects the inner circle from the
outer circle is equal to the probability that there are k − 2 crossings of arbi-
trary colours of this domain, as we discussed in the previous subsection.
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Let fk(r, R) be the probability that the exploration process crosses the
annulus a total number of k − 1 times. Then for even k, fk(r, R) is just the
probability that there exist k crossings of the annulus, which are not all
of the same colour. Indeed, in this case we have the freedom of choosing
alternating colours for the crossings, and then the point R is always
between a clockwise-most blue and a counter-clockwise-most yellow cross-
ing, which proves the point. For odd k, the situation is different, and
fk(r, R) is not equal to the probability that there exist k crossings of the
annulus which are not all of the same colour. However, it can be shown
that the two probabilities differ only by a multiplicative constant, see
ref. 57.

We now make the connection with SLE6. In the continuum limit, the
discrete exploration process converges to the following SLE process. First,
we do radial SLE6 in the annulus from R to 0, up to the first time T that
the process hits the inner circle. Afterwards, the process continues like a
chordal SLE6 process in the remaining domain. We further define E to be
the event that up to time T, the process has not disconnected the inner
circle from the outer circle. On this event, we let L denote the p-extremal
distance between the two circles in the remaining domain.

Denote by gk(r, R) the probability that this SLE6 process crosses the
annulus k − 1 times before it disconnects the inner circle from the outer
circle. Then

gk(r, R)=E[1E g+
k − 2(L)] £ E[1E e−v+

k − 2L] (88)

where g+
k (L) is the probability of k crossings of the rectangle (0, L) × (0, ip),

as before. Theorem 6.3 now tells us that gk(r, R) £ (R/r)−vk, where

vk=n(6, v+
k − 2)=

k2 − 1
12

. (89)

Returning to discrete percolation, it follows from this result that the prob-
ability of k crossings of the annulus A(r, R) which are not all of the same
colour behaves like

fk(r, R) £ R−(k2 − 1)/12 when R Q .. (90)

Again, all of this can be made rigorous. (57) Observe also that we can again
interpret the result in terms of crossings of clusters. In this case we have
that for k even, fk(r, R) is comparable to the probability that there exist
j=k/2 disjoint blue clusters crossing the annulus.
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So far we only considered the dichromatic exponents associated with
the probability of k percolation crossings of an annulus that are not all
of the same colour. The corresponding monochromatic exponents for k
crossings that are of the same colour are known to have different values.
They are not so easily accessible through SLE as the dichromatic expo-
nents. However, SLE computations (39) have confirmed that the one-arm
exponent (k=1) has the value 5/48, and in the same article, a description
of the backbone exponent (k=2) as the leading eigenvalue of a differential
operator was given.

6.3.3. Left-Passage Probability of Critical Percolation
In Section 6.1.3 we discussed the left-passage probability of SLE

derived by Schramm in ref. 54. From this formula he obtained a percola-
tion result, which was not predicted before in the physics literature.
Following Schramm, consider critical percolation on the triangular lattice
with mesh d > 0 in the unit disk. Fix J ¥ (0, 2p) and let AJ be the arc of the
unit circle between the angles 0 and J, that is, AJ :={exp(is): 0 [ s [ J}.
We are interested in the probability of the event EJ that there is a cluster of
blue hexagons connected to AJ, such that the union of this cluster with the
arc AJ surrounds the origin.

Theorem 6.9.

lim
d a 0

P[EJ]=
1
2

−
C( 2

3)

`p C( 1
6)

2F1
11

2
,

2
3

;
3
2

; − cot2 J

2
2 cot

J

2
. (91)

Proof. The proof of the theorem by Schramm is based on the
observation that the event EJ can be written in terms of the behaviour of
an exploration process. Indeed, consider the chordal exploration process in
the unit disk from 1 to the point exp(iJ). Let cep denote the trace of this
process. Then EJ is equal to the event that the origin is in a connected
component of D0cep which lies on the right-hand side of the exploration
process. See Fig. 16 for an illustration.

Fig. 16. An exploration process passing to the left or the right of the origin, respectively. In
the former case, there is a blue cluster connected to the arc AJ which surrounds the origin, in
the latter case there isn’t.
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Suppose that we now map the unit disk onto the upper half-plane in
such a way that 1 maps to 0 and exp(iJ) maps to .. It is easy to see that
an inverse map with the desired properties is

j(z)=e iJ
z+cot J

2 − i
z+cot J

2+i
, z ¥ H, (92)

since this is just the composition of the standard map (z − i)/(z+i) of H
onto D with a translation and a rotation. Observe that the point z0 which
maps to the origin is z0=i − cot(J/2).

It should be clear that in the scaling limit, the event EJ reduces to the
event that the SLE6 trace in the half-plane passes to the left of the point z0.
The probability of this event is given by Theorem 6.4. Theorem 6.9 follows
immediately from this result. L

7. DISCUSSION

We conclude this article with a short discussion of SLE and its rele-
vance for the study of continuous phase transitions in two dimensions. In
the first place SLE appears as a serious candidate for the scaling limit of
critical models. Indeed, SLE was introduced by Oded Schramm as the only
possible candidate for the scaling limit of the loop-erased random walk,
and the definition and properties of SLE were sufficiently general to allow
him to conjecture that SLE also describes the scaling limits of uniform
spanning trees and critical percolation. In fact, it is believed that conformal
invariance combined with the stationarity property is sufficient for a whole
range of critical models to converge to SLE (Section 5).

Apart from being the candidate for the scaling limit of critical models,
SLE also gives us an idea of how the convergence can be proved. One
could try to describe the discrete path of the critical model by a Löwner
evolution, and then prove that the driving function converges to Brownian
motion. Indeed, this is the way in which the convergence of loop-erased
random walk to SLE2, and of the Peano curve winding around the uniform
spanning tree to SLE8 were proved. Recently, the harmonic explorer was
added to the list, and it seems reasonable to believe that in the future more
connections between discrete models and SLE will be established.

Another important aspect of SLE is that it allows us to do computa-
tions and prove properties of critical models. Several examples have been
given in this article. We have seen that SLE has not only led to rigorous
confirmations of the values of critical exponents predicted before in the
physics literature, but also to a new result in the form of Schramm’s left-
passage probability. More results from SLE are to be expected.
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However, a limitation of SLE appears to be that it is only capable of
describing a very specific aspect of the discrete models. In the Fortuin–
Kasteleyn cluster formulation of the Potts model, for example, SLE
describes the boundary of one special cluster connected to the boundary, as
explained in Section 5.5. An interesting question is then what SLE can tell
us about the full configuration of clusters. In the case of critical percolation
(SLE6) a description of the full limit appears to be possible, (13) but for
other values of o it is not so clear how one should proceed. Indeed, so far
most applications of SLE are restricted to the SLE6 case, where the locality
property allows one to ‘‘forget’’ the boundary conditions. For other values
of o more work needs to be done, for example to clarify what SLE can say
about correlations between spins in the Potts or O(n) models.

Interesting developments have taken place regarding the connection
between SLE and conformal field theory (CFT), a subject not considered
in this article. Various aspects of this connection have been studied in a
series of papers by Michel Bauer and Denis Bernard, (4–7) showing for
example how results from SLE can be computed in the CFT language.
Another connection was proposed by John Cardy (16) who introduced a
multiple SLE process. This he could connect with Dyson’s Brownian
process, and through it to the distribution of eigenvalues of ensembles of
random matrices. Using the conformal restriction properties studied in
ref. 42, the work of Roland Friedrich and Wendelin Werner (20, 21, 59) further
clarifies the link between the discrete systems and conformal field theory.
Thus SLE may prove to be very useful in putting the ideas of conformal
field theory on a mathematically more rigorous footing.

SLE is a promising field of research, and the literature on SLE is
already quite vast and still growing. In this discussion we only touched
upon some of the developments that have taken place, without the inten-
tion of providing a complete list. In conclusion, SLE seems invaluable for
adding mathematical rigour to our understanding of the scaling limits of
critical two-dimensional systems and their conformal invariance. This same
fact makes SLE a mathematically and technically challenging object of
study. We hope that this article may serve as an aid to both mathemati-
cians and physicist for making this interesting field more accessible.

APPENDIX A. CONFORMAL MAPPING THEORY

This appendix gives a summary of some of the background theory we
need to study SLE. We start with the general theory of conformal maps,
and then focus on specific topics regarding conformal maps of the unit disk
D={z: |z| < 1} and conformal maps of the complex upper half-plane H=
{z: Im z > 0}. In the fifth subsection, we will discuss maps of rectangles
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onto the upper half-plane. The material for this section is taken from the
books by Ahlfors, (1, 2) Gamelin, (23) and Pommerenke, (50) and the article by
Lawler. (33) Most theorems are presented without proofs, and where a proof
is provided this is done either to illustrate a technique, or because the
standard text-books do not give a proof.

A.1. Basics of Conformal Mapping Theory

First let us fix some terminology. A domain is an open connected
subset of the complex plane. We call a domain simply connected if it
contains no holes. More precisely, a domain is simply connected if its
complement in the complex plane is connected or, equivalently, if every
closed curve in the domain can be contracted continuously to a single point
of the domain.

A conformal map f of a simply connected domain D ] C onto another
simply connected domain DŒ ] C is a one-to-one map which preserves
angles. That is, if c0 and c1 are two curves in D which intersect at a certain
angle, then their images f p c0 and f p c1 must intersect at the same angle.
In practice this means that a conformal map f: D Q DŒ is an injective and
analytic function on D, which has nonzero derivative everywhere on D. It
has an inverse f−1 which is also conformal.

The main theorem about these conformal maps is the Riemann
mapping theorem, which tells us that any simply connected domain D can
be mapped conformally onto the open unit disk D. Note that the theorem
says nothing about the behaviour of the map at the boundary “D.
However, in this article we only consider maps whose definition can be
extended to the boundary (if there are points on the boundary that are
multiple boundary points, we have to distinguish between them, as we
explain below), and in the text we may sometimes tacitly assume this. The
reason is that we only work with domains whose boundaries are con-
tinuous curves (see Chapter 2 of Pommerenke (50) for details, in particular
Theorems 2.1, 2.6, and 2.14).

Theorem A.1 (Riemann Mapping Theorem). Let D ] C be a
simply connected domain in C. Then there is a conformal map of D onto
the open unit disk D.

Note that the Riemann mapping theorem is not restricted to bounded
domains. This means that domains can have well-defined boundary points
at infinity. For example, the upper half-plane has a single boundary point
at ., and the infinite strip {z: 0 < Im z < p} has two distinct boundary
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Fig. 17. Some special boundary points. The infinite strip on the left has two distinct
boundary points at − . and +., while the slit domain on the right has a double boundary
point at z.

points at − . and at +.. By mapping these domains onto D it can be
made explicit that these boundary points are well-defined, see Fig. 17.

Likewise, the example of the slit domain depicted in the figure clarifies
that one can have a multiple boundary point at some point z. In the
example, when the domain is mapped onto D all the points along the slit
will have two images on the unit circle (except for the tip of the slit), and
are therefore double boundary points. So although the preimages happen
to coincide two-by-two, it is clear that they are distinct boundary points,
and we will treat them as such. The same holds for triple boundary points
and so on (of these there can exist only countably many).

The conformal map of a domain D onto D is unique up to composi-
tion with a conformal self-map of the unit disk. Therefore, the Riemann
mapping theorem together with the following theorem on the conformal
self-maps of the unit disk provide the basis for the theory of conformal
maps.

Theorem A.2. The conformal self-maps of the open unit disk D are
precisely the transformations of the form

f(z)=e ij z − a
1 − āz

, |z| < 1, (93)

where a is complex, |a| < 1, and 0 [ j [ 2p.

It follows from this theorem that the map f: D Q D is determined
uniquely if we specify three real parameters. For example, one commonly
specifies f(z)=0 and fŒ(z) > 0 (that is, fŒ(z) is real and positive) at some
specific point z ¥ D, to make the map unique. Indeed, it should be clear
from Theorems A.1 and A.2 that such a map exists. Further, if g is another
map satisfying the same conditions, then f p g−1 is a conformal self-map of
D which fixes the origin and has positive real derivative in 0. But then
f p g−1 must be the identity, by Theorem A.2, whence f=g. The unique
number 1/fŒ(z) in fact defines a measure for the inner radius of the
domain D, called the conformal radius, see Section A.2.
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Using the Riemann mapping theorem, we can also study conformal
maps between two simply connected domains D, DŒ ] C in the complex
plane. A conformal map of D onto DŒ is easily defined through the con-
formal map of D onto D, and the inverse of the map of DŒ onto D. Again,
the map is unique if we specify three real parameters. For example, if we fix
two points z ¥ D, w ¥ DŒ, then there is a unique conformal map f of D onto
DŒ with f(z)=w and fŒ(z) > 0.

Another way commonly used to specify a map uniquely is the follow-
ing. Fix three distinct points z1, z2, z3 ordered counter-clockwise on the
boundary of D, and three distinct points w1, w2, w3, ordered similarly on
the boundary of DŒ. Then there is a unique conformal map f of D onto DŒ

with f(zi)=wi, i=1, 2, 3. This may not be immediately obvious from
Theorem A.2, but we shall see in Section A.3 that this follows quite easily
from the form of the conformal self-maps of the upper half-plane.

This latter consequence of the Riemann mapping theorem suggests
a way to define a conformally invariant distance between two arcs on the
boundary of a simply connected domain D. This distance is defined
through the conformal map of D onto the rectangle (0, L) × (0, ip) (see
Fig. 18). Since we can choose only three real parameters of a map, we may
expect that the length L of the rectangle is fixed uniquely. In Section A.5
we will prove that this is indeed the case.

Definition A.1 (p-Extremal Distance). Let D be a simply con-
nected domain, and let z1, z2, z3 and z4 be four distinct points on the
boundary “D of D, ordered counter-clockwise. Let L > 0 be the unique real
number such that there is a conformal map f of D onto the rectangle
(0, L) × (0, ip) with f(z1)=ip, f(z2)=0, f(z3)=L, and f(z4)=L+ip.
Then L is called the p-extremal distance between the arcs [z1, z2] and
[z3, z4] on “D.

We remark that p-extremal distance is the same as p times extremal
distance, which is itself a special case of the more general notion of extre-
mal length. For more information, and for some properties of extremal
distance, see Ahlfors. (2) Another measure related to arcs on the boundary

Fig. 18. The p-extremal distance L between two arcs on the boundary of a domain D is
determined by the conformal map f onto the rectangle of height p.
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of a domain D is the harmonic measure, which we define below for a (not
necessarily simply) connected domain D. It is easy to prove that the har-
monic measure is invariant under conformal maps, e.g., by applying the
Cauchy–Riemann equations and using harmonicity of conformal maps.

Definition A.2 (Harmonic Measure). Let D be a connected
domain whose boundary is continuous, and suppose that the boundary is
divided into two parts A and B, each consisting of a finite number of arcs.
Then there exists a unique bounded harmonic function w(z) in D such that
w(z) Q 1 when z tends to an interior point of A and w(z) Q 0 when z tends
to an interior point of B. The number w(z) is called the harmonic measure
of A at the point z with respect to D.

We complete our general introduction to conformal mapping theory
with the formulation of two basic and very useful theorems.

Theorem A.3 (Schwarz Reflection Principle). Let D be a
domain that is symmetric with respect to the real axis, and let D+=D 5 H.
Let f(z) be an analytic function on D+ such that Im[f(z)] Q 0 as z ¥ D+

tends to D 5 R. Then f(z) extends to be analytic on D, and the extension
satisfies

f(z̄)=f(z), z ¥ D. (94)

Theorem A.4 (Schwarz Lemma). Suppose that f(z) is analytic
on D, that f(0)=0 and that |f(z)| [ 1 for |z| < 1. Then

|f(z)| [ |z| for |z| < 1 (95)

and hence,

|fŒ(0)| [ 1. (96)

Further, if |f(z0)|=|z0 | for some z0 ] 0, then f(z)=e iaz for some real
constant a. Moreover, f(z)=e iaz for some real constant a if and only if
|fŒ(0)|=1.

A.2. Normalized Maps of the Unit Disk

In this subsection we consider two standard classes of conformal
maps. The first class is the class of one-to-one conformal maps f of D
(onto some other domain) that are normalized by f(0)=0 and fŒ(0)=1.
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The class of these maps is usually denoted by S, and each f ¥ S has an
expansion around z=0 of the form

f(z)=z+a2z2+a3z3+ · · · +anzn+ · · · . (97)

The second class, denoted by S, is the collection of one-to-one maps F
defined on {z: |z| > 1} that have an expansion of the form

F(z)=z+
b1

z
+

b2

z2+ · · · +
bn

zn+ · · · (98)

for z Q .. Our purpose is to look at properties of the expansion coeffi-
cients an and bn, and some consequences. For more details the reader is
referred to Ahlfors. (2) We start with the class S, for which the main
theorem is the area theorem.

Theorem A.5 (Area Theorem). The coefficients in the expan-
sion (98) of any function F ¥ S satisfy ;.

n=1 n |bn |2 [ 1.

Now we move on to the class S. For this class of functions, there is a
famous conjecture of Bieberbach from 1916 on the expansion coefficients,
which was finally proved by de Branges in 1985 after many partial results.
Most notably in the present context is that Löwner (43) introduced his
Löwner equation, which lies at the basis of SLE, to prove that |a3 | [ 3 in
1923. His method was also a key to the final proof of the Bieberbach
conjecture by de Branges.

Theorem A.6 (Bieberbach–de Branges Theorem). The coeffi-
cients in the expansion (97) of any function f ¥ S satisfy |an | [ n for all n \ 2.

The following two theorems are consequences of the fact that |a2 | [ 2.
The first of these theorems provides estimates for |f(z)| and |fŒ(z)|, and is
known as the Koebe distortion theorem. The second theorem is the Koebe
one-quarter theorem, which can be obtained directly from the distortion
theorem. Indeed, if we take the limit |z| Q 1 in the left-most inequality
of Eq. (99) below, we immediately get the desired result. The one-quarter
theorem is often used in conjunction with the Schwarz lemma to provide
upper and lower bounds on some quantity.

Theorem A.7 (Koebe Distortion Theorem). The functions f ¥ S
satisfy

|z|
(1+|z|)2 [ |f(z)| [

|z|
(1 − |z|)2 ,

1 − |z|
(1+|z|)3 [ |fŒ(z)| [

1+|z|
(1 − |z|)3 . (99)
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Fig. 19. The in-radius r of a domain D with respect to z0, and the map g that defines the
conformal radius with respect to z0.

Theorem A.8 (Koebe One-Quarter Theorem). The image of the
unit disk under a mapping f ¥ S contains the disk with centre 0 and
radius 1

4 .

As an application, let us discuss the notion of conformal radius.
Suppose that D is a simply connected domain, and let z0 ¥ D. Then the
in-radius r of D with respect to z0 is defined by r :=inf{|z − z0 |: z ¨ D}. It is
the radius of the largest open disk with centre z0 that fits inside D, see
Fig. 19. Now let g be the conformal map of D onto D such that g(0)=z0

and gŒ(0) > 0. Then the unique number gŒ(0) is called the conformal radius
of D with respect to z0. We now prove that this conformal radius is deter-
mined by the in-radius up to a factor 4, that is, r [ gŒ(0) [ 4r.

Indeed, it is clear that g−1(rz+z0) is a map that satisfies the conditions
of the Schwarz Lemma A.4. Therefore, it follows that r(g−1)Œ(z0) [ 1,
hence gŒ(0) \ r. On the other hand, the map f(z)=(g(z) − z0)/gŒ(0) is
in S, and the Koebe one-quarter theorem says that inf{|z|: z ¨ f(D)} \ 1

4 .
From this it follows that gŒ(0) [ 4r, and we are done.

It is clear that any conformal map g: D Q D can be renormalized to
yield a map f ¥ S (onto a different domain DŒ). We used this technique
above to prove the relation between the in-radius and the conformal
radius. Similarly, other properties of functions in S can be translated to
properties of any map g in this way.

A.3. Conformal Maps of the Upper Half-Plane

In this subsection we study conformal maps of a domain D onto the
complex upper half-plane H. Our first observation is that any simply con-
nected domain can be mapped conformally onto H. This follows from the
Riemann mapping theorem, and the fact that the map f(w)=i(1+w)/
(1 − w) is a standard conformal map of D onto H. We can also go back
from the upper half-plane to the unit disk by using the inverse map
f−1(z)=(z − i)/(z+i). In complex analysis, one often does not distinguish
between the half-plane and the unit disk, since one always has the freedom
to map conformally from the one space to the other.
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Conformal maps of simply connected domains onto the upper half-
plane are unique up to composition with the conformal self-maps of the
upper half-plane. The form of these maps is given by the following
theorem.

Theorem A.9. The conformal self-maps of the upper half-plane H
are precisely the (fractional linear or Möbius) transformations

f(z)=
az+b
cz+d

, Im z > 0, (100)

where a, b, c, and d are real numbers satisfying ad − bc > 0.

These maps are especially effective for rearranging points on the
boundary of a domain. In particular, Theorem A.9 shows that the con-
formal self-map of H which takes the points x1 < x2 < x3 on the real line to
0, 1, and ., respectively, is unique. Further, the only self-map which fixes
the points 0, 1, and . is the identity. From this one can easily deduce that
any conformal map is determined uniquely if one specifies the images of
three distinct points on the boundary.

We now know how to map back and forth between the half-plane and
the unit disk, and we also know the conformal self-maps of both spaces.
This knowledge is extremely useful in deriving properties of a general
conformal map of one domain onto another. A standard procedure is to
map these domains onto H or D, and then use a conformal self-map to
rearrange the points in H or D appropriately. As an example, let us prove
the following consequence of the Schwarz lemma.

Corollary A.10. Let g map H into H conformally. Then for all
points z=x+iy ¥ H,

y |gŒ(z)| [ Im g(z). (101)

If g is not a conformal self-map of H, then we have strict inequality.

Proof. The result follows by constructing a map of D into D satisfy-
ing the conditions of the Schwarz Lemma A.4. First, we map D onto H in
such a way that 0 maps onto z, see Fig. 20. To find this map, we compose
the standard map of D onto H with an appropriate self-map of H, which
leads to

f1(w)=x+i
1+w
1 − w

y, |w| < 1. (102)
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Fig. 20. Illustration of how compositions can be used to derive properties of a conformal
map g.

The map g then takes z to the image z :=g(z) ¥ H. Next, we apply a map
of H onto D, which takes z back to 0. To find such a map, we simply do a
translation followed by a rescaling in the half-plane to move the point z to i,
and then compose with the standard map of H onto D that takes i to 0.
This gives the map

f2(w)=
w − z

w − z̄
, w ¥ H, (103)

Figure 20 illustrates the construction.
Now, we note that the composite map f :=f2 p g p f1 is a map that

satisfies the conditions of the Schwarz lemma. Indeed, f is analytic on the
unit disk, it maps 0 to 0, and it maps the unit disk into the unit disk (since
g maps the half-plane into the half-plane). Hence, by the Schwarz lemma,

|fŒ(0)|=|f −

2(z)| |gŒ(z)| |f −

1(0)| [ 1. (104)

Since f −

1(0)=2iy and f −

2(z)=1/(z − z̄), we get

|fŒ(0)|=
y

Im z
|gŒ(z)| [ 1. (105)

which is what we wanted to prove.
Equality can only hold for a subclass of conformal self-maps of H,

namely for those maps that correspond to rotations of the unit disk, as
should be clear from the Schwarz lemma. Hence, if g is not a conformal
self-map of H, we must certainly have strict inequality. L

A.4. Hulls and Capacity in the Half-Plane

Now let us introduce some notions and notations that are used in the
literature on SLE. A hull in the half-plane is a compact set K … Hb such that
H0K is simply connected and K=K 5 H (this latter condition ensures
that K contains no intervals of R that are ‘‘sticking out’’ to the left or
the right). Examples of hulls in the upper half-plane are the straight line
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segment [0, iR], the closed rectangle [0, L] × [0, ip] and the closed half-
disk {z ¥ Hb : |z| [ R}.

Given a hull K, according to the Riemann mapping theorem there
exists a conformal map gK: H0K Q H. This conformal map can be chosen
to map infinity to infinity. Then it is clear that the map gK has an expan-
sion around z Q . of the form

gK(z)=bz+a0+
a1

z
+

a2

z2+ · · · . (106)

Note that the leading term must be linear in z, because higher powers of z
will certainly send a part of H0K to the lower half-plane. Further, since
the map gK maps R0K into R, the Schwarz reflection principle applies, and
the map extends to the complement in C of

Kg={z: z ¥ K or z̄ ¥ K}. (107)

On C0Kg, the map must satisfy gK(z)=gK(z̄), which shows that all coef-
ficients in the expansion of gK have to be real.

So far, we have only specified that gK has to map infinity to infinity.
But we would like to specify the map uniquely. Theorem A.9 tells us that
this can be done by scaling and translation. A convenient choice is to let gK

satisfy the hydrodynamic normalization

lim
z Q .

(gK(z) − z)=0. (108)

This fixes b=1 and a0=0. The expansion of gK around infinity is thus of
the form

gK(z)=z+
a1

z
+

a2

z2+ · · · . (109)

Note that this expansion is of the same form as the expansion for functions
in the class S of Section A.2. This means that we can use the area theorem
to obtain bounds on the coefficients an.

Indeed, if R denotes the radius of the hull K measured from the origin,
then the map gK(Rz)/R is in the class S. Now, as a direct consequence of
the area theorem, the coefficients bn=an/Rn+1 in the expansion of this
map around infinity satisfy |bn | [ 1 for all n \ 1. This proves the following
theorem.

Theorem A.11. Let R be the radius of the hull K measured from
the origin. Then the coefficients in the expansion (109) satisfy an [ Rn+1.
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The coefficient a1, which depends only on K (a1=a1(K)), is called the
capacity of the hull K in the half-plane H. It is clearly invariant under
translations of the hull over the real line. Thus, if R is the radius of the
smallest half-disk centred on the real line that contains K, then a1(K) [ R2

by the previous theorem. In the following paragraphs, three more impor-
tant properties of capacity will be derived.

Positivity. The capacity of a nonempty hull K is a positive number,
which we can prove as follows. Observe that the map g−1

K is a map of the
half-plane H into itself. Suppose that we now set z :=gK(iy) (where y is
large, and will be sent to infinity later). Substituting this into Corol-
lary A.10 gives

Im[gK(iy)] |(g−1
K )Œ(z)| < y or y2 − y

Im[gK(iy)]
|g −

K(iy)|
> 0. (110)

If one now uses the expansion of gK around infinity and takes y Q ., the
result a1(K) > 0 follows immediately.

Scaling Rule. Consider the hull rK where r > 0, and the conformal
map grK that corresponds to this hull. It is obvious that another conformal
map of H0(rK) onto H is given by gK(z/r). We can easily make this map
satisfy the hydrodynamic normalization by multiplying it by a factor r, as
follows from the expansion around infinity (109). But because the map
grK of H0(rK) onto H that satisfies the hydrodynamic normalization is
unique, the above implies that grK(z)=rgK(z/r). Hence we obtain the
scaling relation

a1(rK)=r2a1(K) (111)

for the capacity of the hull K, again using the expansion (109).

Summation Rule. The summation rule for capacities follows by
considering two hulls J and K in the upper half-plane such that J … K. The
corresponding conformal maps are gJ and gK. We can define a third hull L
by L :=gJ(K0J), which has associated with it a conformal map gL. The
conformal maps are related by gK=gL p gJ, see Fig. 21, because both gK

and gL p gJ map H0K onto H and satisfy the hydrodynamic normaliza-
tion. Inserting the expansions around infinity, we easily obtain

a1(K)=a1(J)+a1(L). (112)

Thus, if we have two hulls J … K, the capacity of the larger hull is the sum
of the capacities of the smaller hull and a third hull L :=gJ(K0J).
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Fig. 21. The capacities of two hulls J … K are related through a third hull L, which is the
closure of the image of K0J under the map gJ.

We conclude this subsection with the Poisson integral representation
of the map gK for a given hull K. We should note that in text-books the
Poisson formula is often only discussed for the unit disk, while the half-
plane case is left as an exercise (see Ahlfors, (1) Chapter 4, Sections 6.3
and 6.4 and Gamelin, (23) Chapter X, Section 1 and the exercises following
these sections in both books). In the half-plane, the Poisson integral
formula tells us that

z − g−1
K (z)=

1
p

F
.

−.

Im g−1
K (t)

z − t
dt, z ¥ H (113)

or, upon replacing z by gK(z),

gK(z) − z=
1
p

F
.

−.

Im g−1
K (t)

gK(z) − t
dt, z ¥ H0K. (114)

Moreover, when we multiply both sides of (114) by z and send z to infinity
we obtain the following expression for the capacity of K:

a1(K)=
1
p

F
.

−.

Im g−1
K (t) dt. (115)

A.5. Mapping Rectangles onto the Upper Half-Plane

In this subsection we study conformal maps of rectangles onto the
upper half-plane. We are interested in these maps for two reasons. The first
reason is that the notion of p-extremal distance plays a key role in SLE,
and p-extremal distance is defined through mappings to rectangles. The
second reason is that we want to study critical exponents for the crossing of
rectangles by an SLE process, and we do so by mapping this problem to
the half-plane. We start our discussion from the following basic theorem on
the mapping of rectangles, which can be found in Ahlfors (1) (see Fig. 22 for
an illustration of the map).
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Fig. 22. How F(w) of Theorem A.12 maps the upper half-plane to a rectangle.

Theorem A.12. Let w ¥ H, and define the map F(w) by the elliptic
integral

F(w)=F
w

0

dz

`z(z − 1)(z − r)
, (116)

where 1 < r ¥ R, and `z, `z − 1, and `z − r take on values in the first
quadrant. Then F(w) is the conformal map of H onto the rectangle
(−K, 0) × (0, −iKŒ), where

K =F
1

0

dt

`t(1 − t)(r − t)
, KŒ=F

r

1

dt

`t(t − 1)(r − t)
, (117)

and F(0)=0, F(1)=−K, F(r)=−K − iKŒ, and F(.)=−iKŒ.

Maps of H onto other rectangles can be obtained from the map in the
theorem by scaling, rotation and translation. We can also rearrange the
points on the real line that map to the corners of the rectangle, by compo-
sition with a conformal self-map of the upper half-plane. The proofs of the
following lemma and its corollary make use of these techniques.

Lemma A.13. Let F(z) be the conformal map of the rectangle
(0, L) × (0, ip) onto H such that F(ip)=0, F(0)=1, and F(L+ip)=..
Then F maps L onto some point r > 1 on the real line. L is monotone
increasing with r and, moreover, L=log r+O(1) as L Q ..

Proof. From Theorem A.12, we know that the inverse of the map F

is of the form

F−1(w)=iaK+iaF(w), (118)

with a a scaling factor and K and F(w) as in the theorem. The aspect ratio
of the rectangle is given by L/p=KŒ/K. To analyse the behaviour of this
aspect ratio as a function of r, observe that

`r K=F
1

0

dt

`t(1 − t)(1 − t/r)
, (119)
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while by the substitution u=(t − 1)/(r − 1) we can transform the integral
for KŒ into

`r KŒ=F
1

0

du

`u(1 − u)(u+(1 − u)/r)
. (120)

Clearly, 1 − t/r in Eq. (119) is increasing with r, while u+(1 − u)/r in
Eq. (120) is decreasing with r. Hence the aspect ratio KŒ/K is monotone
increasing with r.

Moreover, Eqs. (15.3.1) and (15.1.1) in ref. 48 show that

`r K=2F1
11

2
,

1
2

; 1;
1
r
2 p=p+O(r−1) as r Q ., (121)

while Eqs. (15.3.1), (15.3.4), and (15.3.10) in ref. 48 give

`r KŒ=2F1
11

2
,

1
2

; 1; 1 −
1
r
2 p=log r+O(1) as r Q .. (122)

Since L=pKŒ/K, the lemma follows. L

Corollary A.14. Let Y(z) be the conformal map of the rectangle
(0, L) × (0, ip) onto H such that Y(0)=1, Y(L)=. and Y(L+ip)=0.
Then Y maps ip onto some point t ¥ (0, 1), and L=−log(1 − t)+O(1) as
L Q ..

Proof. The map Y is obtained from the map F of Lemma A.13 by
composition of F with the conformal self-map (r − 1)/(r − z) of the upper
half-plane. This self-map sends 1 to 1, r to infinity, and infinity to 0, as
required. It also sends 0 to t=1 − r−1. It follows that r=(1 − t)−1, and
Lemma A.13 gives the result. L

Lemma A.13 tells us that the aspect ratio KŒ/K of the rectangle of
Theorem A.12 is monotone increasing with r. The reader may verify that
this implies that the p-extremal distance between two arcs on the boundary
of a domain (recall Definition A.1) is indeed determined uniquely.

APPENDIX B. THEORY OF STOCHASTIC PROCESSES

This appendix is devoted to the background theory of stochastic pro-
cesses that is required in the study of SLE. Because not all readers may be
familiar with the measure-theoretic approach to probability theory, we will
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review this background in the first two subsections. The first of these sub-
sections deals with probability spaces and random variables, and the
second with conditional probability and expectation. Our presentation of
this material is based on the book by Ash and Doléans-Dade. (3) Then in
the third subsection we will discuss stochastic processes, and in Section B.4
we will treat Brownian motion. In Section B.5 we go into the topic of mar-
tingales and optional sampling. Finally, we discuss the Itô calculus and
stochastic differential equations. References for these sections are the
books by Grimmett and Stirzaker, (25) Lawler, (29) and Gardiner. (24)

B.1. Measure-Theoretic Background

This subsection is intended for readers who are not familiar with
measure theory or the measure-theoretic approach to probability theory.
The theory is rather technical, and we do not intend to go into all details
here. Our discussion is based on the book by Ash and Doléans-Dade, (3)

and we refer to this work for a completely rigorous treatment.
Suppose that we perform a random experiment. Then all possible

outcomes of this experiment together constitute a set W, which we call the
sample space. It is usually treated as an abstract space, which is often not
defined explicitly but is simply assumed to exist. In probability theory, we
are typically interested in the probability that the actual outcome of our
experiment is in some given subset A of W, called an event. We denote the
set of all such events by F. This set F has to satisfy certain conditions,
imposed by our requirement that all its elements are events whose proba-
bilities we can talk about.

To be precise, we require F to be a s-field over the sample space W.
This means that F is a collection of subsets of W satisfying the conditions

1. ” ¥ F;

2. if A ¥ F then W0A ¥ F;

3. if A1, A2,... ¥ F then 1.

i=1 A i ¥ F.

If G … F is another set satisfying the same conditions, then G is called a
sub-s-field of F. The combination (W, F) of a set W and a s-field F over
W is called a measurable space.

So, we have now associated with our random experiment a measurable
space consisting of the sample space W and a collection of events F. To
talk about probabilities, we introduce a probability measure P on the space
(W, F). This is a function assigning a number in the range [0, 1] to every
element of the s-field F. It has to satisfy the conditions
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1. P[”]=0, P[W]=1;

2. if A1, A2... ¥ F are disjoint, then P[1.

i=1 A i]=;.

i=1 P[A i].

The triple (W, F, P) is called a probability space. An event whose proba-
bility is zero is called a null event, events which occur with probability one
are said to occur almost surely (abbreviated a.s.).

At this point we would like to make the following technical remark.
For a reader with no prior knowledge of measure theory it might not be
clear why we introduced the s-field F: why do we not just define our
probability measure on the collection of all subsets of W? The point is that
in general, not every choice of s-field over a given space W admits the
definition of an appropriate measure. For example, there exists no transla-
tion-invariant measure (except the null-measure) on the collection of all
subsets of R, which assigns a finite number to all bounded intervals of R
(exercise 6 in Section 1.4 of ref. 3). In general, we therefore have to restrict
ourselves to a smaller collection of events to keep everything consistent.

To illustrate this point further, suppose that our experiment consists in
drawing a random number taking values in the real line, so that we can
take W=R. Then we will typically be interested in the probability that the
number is in some interval, or in some union of intervals, and so on. As
our s-field we may therefore take the smallest collection of subsets of R
which is a s-field and which contains all intervals [a, b) (a, b ¥ R), say.
This set is called the Borel s-field over R, denoted by B=B(R), and its
elements are called Borel sets. It contains all open, closed, and compact
subsets of R, and it is the natural s-field to work with over the real line. In
higher dimensions we can give a similar definition of the Borel sets, and we
still denote this collection of sets by B, since the underlying space is usually
clear from the context.

Now that we have captured the description of a random experiment in
terms of a probability space, we can introduce random variables. A random
variable X on a given probability space (W, F, P) is defined as a map
X: (W, F) Q (R, B). What we mean by this notation is that X is a function
assigning a real number to every element of W, which has the additional
property that it is measurable with respect to F: for every Borel set B, the
set {w: X(w) ¥ B} must be an element of F. This measurability ensures
that the probability of all events involving X is determined.

Indeed, it should be clear that if X is measurable, then it induces a
probability measure PX on the space (R, B) turning it into a probability
space. The measure PX is of course defined by setting PX(B)=P[X ¥ B]
for every B ¥ B, where P[X ¥ B] is the natural shorthand notation for
P[{w: X(w) ¥ B}] (we will keep on using such shorthand notations from
now on). Concepts involving the random variable X can be defined both
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on the probability space (W, F, P) and on (R, B, PX). For example, the
distribution function of X is defined by

FX(x) :=P[X [ x]=PX[( − ., x]] (123)

and its expectation value is defined by

E[X] :=F
W

X(w) dP(w)=F
R

x dPX(x). (124)

The reader is reminded that these two integrals are not ordinary Riemann
integrals, but they are Lebesgue integrals with respect to the measures P
and PX, respectively.

The concept of a random variable can be generalized to that of a
random object (or abstract random variable). A random object X on a given
probability space (W, F, P) is a function X: (W, F) Q (WŒ, FŒ), where WŒ

is the state space of the object, and FŒ is an appropriate s-field over WŒ.
Measurability in this case ensures that {X ¥ B} ¥ F for every B ¥ FŒ, and
guarantees that X induces a probability measure PX on FŒ.

Now let us consider the collection of sets {{X ¥ B} : B ¥ FŒ} in more
detail. It is an easy exercise to show that this collection of sets is a s-field.
We call it the s-field generated by the random object X, and denote it by
s(X). Loosely speaking, it is the smallest sub-s-field of F containing all
information about X. An important property of this s-field, that may help
elucidate its meaning, is the following. Suppose that Z is a random variable
on (W, F, P), which is measurable with respect to s(X). Then Z is a
function of X, that is, there exists some f: (WŒ, FŒ) Q (R, B) such that
Z(w)=(f p X)(w). Conversely, for every such function f, the random
variable Z=f p X is measurable with respect to s(X).

Suppose now that instead of a single random object, we are given a
collection {Xi: i ¥ I} of random objects, where I is an arbitrary index set and
Xi: (W, F) Q (Wi, Fi). Then we define s(Xi: i ¥ I) as the smallest sub-s-field
of F containing all events of the form {Xi ¥ B} with i ¥ I and B ¥ Fi. This
set is called the s-field generated by the random objects {Xi: i ¥ I}. Again,
we have that every random variable which is measurable with respect to
s(Xi: i ¥ I) is a function of these random objects and conversely, that every
function of these random variables is measurable with respect to s(Xi: i ¥ I).

We conclude this introductory subsection with an important example
of a random variable, namely the indicator (or indicator function) 1A of an
event A ¥ F. This is the random variable defined by setting

1A(w) :=˛1 if w ¥ A;

0 if w ¨ A.
(125)
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In this case the state space is WŒ={0, 1}, and the s-field FŒ consists of all
subsets of WŒ. The function of this random object is to indicate whether the
outcome of our random experiment is in A.

B.2. Conditional Probability and Expectation

In this subsection we review the general notions of conditional prob-
ability and conditional expectation on a given probability space (W, F, P).
The presentation of this material again follows the book by Ash and
Doléans-Dade. (3) As our starting point, consider the conditional probabil-
ity of an event B given that the random object X takes the value x. We
would like this conditional probability to behave like the function gB(x) in
the following theorem:

Theorem B.1. Let X: (W, F) Q (WŒ, FŒ) be a random object, and
let B ¥ F. Then there exists a function gB: (WŒ, FŒ) Q (R, B) such that

P[{X ¥ AŒ} 5 B]=F
AŒ

gB(x) dPX(x) for all AŒ ¥ FŒ. (126)

Furthermore, if hB is another such function, then gB=hB a.e.

Here, a.e. stands for ‘‘almost everywhere.’’ This means that there is a
set N ¥ FŒ whose measure is zero (where the relevant measure in this case
is given by PX), such that gB=hB outside N. It is clear that in probability
theory we can expect many equalities to hold only ‘‘almost everywhere,’’
and this qualification is therefore usually not mentioned explicitly. In this
article we write ‘‘a.e.’’ explicitly only for the duration of this subsection.
Returning to Theorem B.1, we see that the function gB is essentially unique
(up to null events), and we define the conditional probability of B given
{X=x}, written P[B | X=x], as gB(x).

The conditional probability defined in this way reduces to the defini-
tion we would give intuitively for simple cases. For example, suppose that
A is an event having positive probability. Then we can take X=1A in the
definition, and write P[B | A]=P[B | X=1]. The reader may verify that
Theorem B.1 then gives

P[B | A]=
P[B 5 A]

P[A]
a.e. (127)

as we expect. But whereas the intuitive definition becomes problematic
when P[A]=0, Theorem B.1 shows that it is in fact possible to extend the

1214 Kager and Nienhuis



definition to cover this case. Moreover, the theorem shows that we can
define P[B | X=x] for an arbitrary random object X, even when {X=x}
has probability zero for some, and possibly all, x.

Having dealt with the conditional probability given {X=x}, we now
consider conditional expectation given {X=x}. For a given random vari-
able Y, we define E[Y | X=x] as the essentially unique function gY(x) in
the theorem below. It can be shown that again this definition corresponds
with our intuition in simple cases. The reader may also verify, by setting
Y=1B, that the theorem gives E[1B | X=x]=P[B | X=x] a.e.

Theorem B.2. Let Y be a random variable, and X: (W, F) Q
(WŒ, FŒ) a random object. If E[Y] exists, then there is a function
gY: (WŒ, FŒ) Q (R, B) such that

F
{X ¥ AŒ}

Y(w) dP(w)=F
AŒ

gY(x) dPX(x) for all AŒ ¥ FŒ. (128)

Furthermore, if hY is another such function, then gY=hY a.e.

We now make the generalization to conditional expectation given a
s-field. As a motivation for our approach, observe that the conditional
expectation given by gY in Theorem B.2 is defined on the space (WŒ, FŒ).
But we can turn it into a random variable hY on the space (W, F) by
defining hY(w) :=gY(X(w)):

Then hY(w) is the conditional expectation of Y, given that X takes the
value x=X(w), and one can prove that

F
C

Y(w) dP(w)=F
C

hY(w) dP(w) for all C ¥ s(X). (129)

The random variable hY is a special instance of a conditional expectation
given a s-field, namely hY=E[Y | s(X)], which we usually write conve-
niently as hY=E[Y | X]. The general case is given by the following
theorem.

Theorem B.3. Suppose that G is some general sub-s-field of F. Let
Y be a random variable such that E[Y] exists. Then there is a function
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E[Y | G]: (W, G) Q (R, B), called the conditional expectation of Y given G,
such that

F
C

Y(w) dP(w)=F
C

E[Y | G](w) dP(w) for all C ¥ G. (130)

Moreover, any two such functions must coincide almost everywhere.

Note that we can not just take E[Y | G]=Y in the theorem, because
E[Y | G] is required to be measurable with respect to G, while Y is only
required to be measurable with respect to F. In particular, if G is the
s-field generated by a collection of random variables, then E[Y | G] must
be a function of these variables. As before, we further have that E[1B | G] is
the conditional probability of B given the s-field G, that is, P[B | G]=
E[1B | G]. We now conclude this subsection by stating some properties of
conditional expectations given a s-field.

Theorem B.4. Let Y and Z be random variables such that E[Y]
and E[Z] exist, and let G and H be sub-s-fields of F. Then

1. E[E[Y | G]]=E[Y];

2. E[E[Y | H] | G]=E[E[Y | G] | H]=E[Y | G] a.e. if G ı H;

3. E[YZ | G]=Z E[Y | G] a.e. if Z is measurable with respect to G
and E[YZ] exists.

B.3. Stochastic Processes and Stopping Times

A stochastic process is a family X={Xt: t ¥ I} of random objects
Xt: (W, F) Q (WŒ, FŒ) on the underlying probability space (W, F, P).
Each of the random objects has the same state space WŒ, so that we may
refer to WŒ or even (WŒ, FŒ) as the state space of the process. In this article
we only consider continuous stochastic processes, for which the index set I
is [0, .). We then think of the index t ¥ I as time. For a fixed w ¥ W, the
collection {Xt(w): t \ 0} is a sample path describing one of the possible
ways in which the process can evolve in time.

The stochastic process X is called a Markov process if it satisfies the
Markov property. For continuous stochastic processes this is to say that

P[Xt ¥ B | Xt1
=x1,..., Xtn

=xn]=P[Xt ¥ B | Xtn
=xn] (131)

for all B ¥ FŒ, all possible states x1,..., xn and any sequence of times
t1 < · · · < tn < t. In addition, the process is called time homogeneous if these
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transition probabilities depend only on t − tn and not on tn. The Markov
condition is equivalent to the more formal statement that for all A ¥

s(Xs: 0 [ s [ t) and B ¥ s(Xs: s \ t)

P[B | A, Xt]=P[B | Xt]. (132)

In words, the Markov property states that, conditional on the present value
of the process, the future is independent of the past.

The s-field s(Xs: 0 [ s [ t) we encountered above is called the s-field
generated by the stochastic process up to time t. This s-field is commonly
denoted by Ft. The whole family F={Ft: t \ 0} of these s-fields consti-
tutes a filtration, which is to say that Fs ı Ft if s [ t. Loosely speaking, it is
a growing collection of all information about the process X up to a given
time.

Often, we will be interested in the value of some expression at a
random time T, which is determined by the past and present state of the
process X, but does not depend on the future. Such a random time is called
a stopping time. More precisely, a random variable T taking values in
[0, .] is called a stopping time with respect to the filtration F if the event
{T [ t} is in Ft for all t \ 0. In words, this says that we should be able to
decide on the basis of the sample path of the process up to time t, whether
the stopping time has passed.

An important example of a stopping time is the first time when the
process X hits some subset A ¥ FŒ of the state space. More precisely, if we
define T :=inf{t: Xt ¥ A}, then T is a stopping time if {T [ t} is in Ft for
all t \ 0. We sometimes call such a stopping time a hitting time. In practice
we often consider real-valued or complex-valued stochastic processes having
continuous sample paths, and for these processes times such as the T defined
above usually are indeed stopping times.

Suppose now that X is a Markov process, and that T is a stopping
time for this process. Then the process X is said to have the strong Markov
property if, given the value of XT, the process after time T is again a
Markov process which is independent from the events prior to T, and if
this post-T process has the same transition probabilities as the process X.
More formally, if we write gt, B(x) :=P[Xt ¥ B | X0=x], then X has the
strong Markov property if for all stopping times T,

P[XT+t ¥ B | FT]=gt, B(XT) (133)

for any t > 0 and B ¥ FŒ. Here, FT is the s-field of all events that are prior
to T. These are the events A ¥ F such that A 5 {T [ t} ¥ Ft for all t \ 0
(the reader may check that for T=t fixed, FT is just Ft).
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We end this subsection with some remarks about the filtration F. It is
common practice to work with s-fields Ft that are somewhat larger than
the Ft we have been considering above. These larger s-fields arise out of
the following three assumptions:

1. The probability space (W, F, P) is complete, in the sense that
every subset of a null event is itself an event.

2. The Ft contain all null events.
3. The Ft are right-continuous: Ft=Ft+ where Ft+=4s > 0 Ft+s.

Under the last assumption, the condition for T to be a stopping time is
equivalent to requiring that {T < t} ¥ Ft for all t \ 0. In the literature
stopping times are sometimes defined by this latter condition.

B.4. Brownian Motion and Brownian Excursions

A key role in this article is played by Brownian motion. In this sub-
section we shall look at the definition of standard Brownian motion, and
then explore some basic properties. Standard Brownian motion is defined
as a real-valued stochastic process {Bt: t \ 0} which satisfies the following
conditions:

1. for any 0 [ s1 < t1 [ s2 < t2 [ · · · [ sn < tn the random variables
Bt1

− Bs1
, Bt2

− Bs2
,..., Btn

− Bsn
are independent;

2. for any s < t, the random variable Bt − Bs is normally distributed
with mean 0 and variance t;

3. the sample paths are almost surely continuous in time, and B0=0.

It is not immediately obvious that the conditions of the definition are
consistent, but it can be proved that Brownian motion exists. The transi-
tion probability for Brownian motion from the state x to a Borel set A is
given by

P[Bs+t ¥ A | Bs=x]=
1

`2pt
F

A
e−(y − x)2/2t dy (134)

where the integrand on the right is the Gauss kernel (or heat kernel).
Knowing the transition probability density of Brownian motion, it is not
difficult to prove the following lemma.

Lemma B.5. Let {Bt: t \ 0} be standard Brownian motion. Then
each of the following stochastic processes is also standard Brownian
motion:
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{ − Bt: t \ 0} reflection invariance

{Bs+t − Bs: t \ 0} time homogeneity

{aBt/a2: t \ 0} scaling property

{tB1/t: t \ 0} time inversion symmetry.

It is clear from the definition that Brownian motion is a Markov
process, since given Bs, the value of Bs+t depends only on the increment
Bs+t − Bs which is independent from all information up to time s. Indeed, at
every time s it is as if the Brownian motion starts afresh from the posi-
tion Bs, as time homogeneity shows. In fact, this holds even if s is a stopping
time for the Brownian motion. More precisely, if T is a stopping time, then
BT+t − BT is a standard Brownian motion which is independent of the
events prior to T. In other words, Brownian motion has the strong Markov
property.

Up to now, we considered only one-dimensional Brownian motion.
The extension to more dimensions is straightforward. In d dimensions,
we can consider d independent standard Brownian motions B1

t ,..., Bd
t and

define d-dimensional standard Brownian motion by BF t :=(B1
t ,..., Bd

t ).
Likewise, Brownian motion in the complex plane can be defined as the
random process B1

t +iB2
t . It is of course equivalent to Brownian motion

in R2. Brownian motion in the complex plane satisfies the following theorem.

Theorem B.6. Let Bt be a complex Brownian motion starting in z.
Let D, E be disjoint subsets of C such that D 2 E is closed. Suppose further
that every connected component of C0(D 2 E) has a continuous boundary
consisting of a finite number of arcs in D and a finite number of arcs in E.
Denote by P(z) the probability that the Brownian motion hits the subset D
before it hits E. Then P(z) is determined by the Dirichlet problem

˛DP(z)=0, z ¥ C0(D 2 E);

P(z)=1, z ¥ D;

P(z)=0, z ¥ E.

(135)

Note that if z is in a connected component G of C0(D 2 E), then P(z)
is just the harmonic measure of “G 5 D at the point z with respect to G (see
Section A.1). We also remark that there are analogues of Theorem B.6
in higher dimensions. As an example in two dimensions, consider the
rectangle RL :=(0, L) × (0, ip). Suppose that P(z) denotes the probability
that a Brownian motion started from z=x+iy first leaves the rectangle
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through the edge (L, L+ip). Then it can be verified using Theorem B.6
that

P(z)= C
odd k > 0

4
pk

sinh(kx)
sinh(kL)

sin(ky). (136)

Observe that for small x this probability is of order x, and that for large L
it scales like exp(−L).

Now suppose that Pz denotes the probability measure on Brownian
paths started from z ¥ RL and stopped when they hit the boundary of the
rectangle. Then a measure mL on Brownian paths that start from the edge
(0, ip) is defined by

mL(w) :=F
p

0
lim
e a 0

e−1Pe+iy(w) dy. (137)

We call this measure the Brownian excursion measure on paths starting
from (0, ip), and we call these paths Brownian excursions of the rectangle
starting from the edge (0, ip). Equation (136) shows that if we restrict this
measure to Brownian excursions crossing the rectangle from left to right,
then it has finite total mass, and hence can be used to define a probability
measure on these excursions.

By conformal invariance of Brownian motion, we can now easily
define the probability measure on Brownian excursions crossing an arbi-
trary simply connected domain D from an arc A1 of “D to a disjoint arc A2

of “D. Mapping the domain to a rectangle, it should be clear that the
measure on such Brownian excursions is easily defined through the
measure mL, where L is the p-extremal distance between the arcs A1 and
A2 in the domain D.

B.5. Martingales and Optional Sampling

A broad class of real-valued or complex-valued stochastic processes of
interest is the class of martingales. These are ‘‘fair’’ or ‘‘unbiased’’ proces-
ses in the sense that the expected value of the process at any time in the
future, given all information about the process up to the present time, is
equal to the present value of the process. Another way of expressing this, is
to say that martingales are processes without ‘‘drift.’’ We will come back
to this point of view in the next subsection. We now give a more precise
definition of a martingale.
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Definition B.1 (Martingale). Let Y={Yt: t \ 0} be a real-valued
or complex-valued random process, and let F be a filtration such that Yt is
Ft-measurable for all t \ 0. Then the pair (Y, F) is called a martingale if

1. E[|Yt |] < . for all t \ 0;

2. E[Yt | Fs]=Ys for all s < t.

If F is the natural filtration generated by the process Y itself, then we say
simply that Y is a martingale if it satisfies the conditions above.

The following theorem expresses a connection between a martingale
and a Markov process Xt. As the theorem shows, this martingale is defined
as a function k(Yt) of the variable Yt=Xmin{t, T}, where T is a stopping time
for Xt. In practice, although this is not strictly correct, we often say that
k(Xt) itself (conditional on t < T) is a martingale under the conditions of
the theorem. A proof of the theorem is provided since it is not so easily
found in elementary text-books.

Theorem B.7. Let X be a time-homogeneous Markov process with
state space (WŒ, FŒ) and F a filtration such that Xt is Ft-measurable for all
t \ 0. Let T be the hitting time of A ¥ FŒ for this process, and let f: A Q R
be a bounded function. Define

k(y) :=E[f(XT) | X0=y]. (138)

Set Yt :=Xmin{t, T}. Then the process Zt :=k(Yt) is a martingale with respect
to F.

Proof. Observe that for all y ¥ WŒ, s \ 0, and B ¥ FŒ we have

P[XT ¥ B | Ys=y]=P[XT ¥ B | Y0=y] (139)

by time homogeneity. Using the Markov property it follows that for all
s \ 0 and B ¥ Fs

F
B

f(XT(w)) dP(w)=F
B

E[f(XT) | Fs](w) dP(w)

=F
B

E[f(XT) | Ys](w) dP(w)

=F
B

k(Ys(w)) dP(w). (140)
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Now suppose that s < t, and let B ¥ Fs be arbitrary. Then B ¥ Ft because F
is a filtration, and it follows that

F
B

E[k(Yt) | Fs](w) dP(w)=F
B

k(Yt(w)) dP(w)

=F
B

f(XT(w)) dP(w)

=F
B

k(Ys(w)) dP(w). (141)

This proves that E[k(Yt) | Fs]=k(Ys). Finally, by the boundedness of f
we have E[|k(Yt)|] < . for all t. L

As we said earlier, a martingale is a fair process. Thus we may expect
that if we stop the process at some stopping time T, the expected value of
the process at that time is just the value at time 0. However, this statement
does not hold in full generality. A more precise and careful formulation
leads to the following theorem, which is called the optional sampling
theorem by some, and the optional stopping theorem by others. We stick to
the name optional sampling theorem in this article.

Theorem B.8 (Optional Sampling Theorem). Let (Y, F) be a
martingale and let T be a stopping time for the process Y. If P[T < .]=1,
E[|YT |] < ., and lim s Q . E[|Ys | | T > s] P[T > s]=0, then

E[YT]=E[Y0]. (142)

As a special application of the optional sampling theorem, consider
the following situation. Let D … C be a simply connected domain with
continuous boundary, and let f(z) be a bounded harmonic function on D
that extends continuously to “D. Suppose that Bt is a complex Brownian
motion starting in z ¥ D, and consider the process Yt=f(Bt). Itô’s formula
in two dimensions (to be discussed in the following subsection) shows that
Yt is a martingale, as long as Bt stays in D. Therefore the following theorem
holds.

Theorem B.9 (Optional Sampling Theorem, Special Case). Let
D, f, and Bt be as in the previous paragraph. Define the stopping time T
by T :=inf{t: Bt ¥ “D}. Then

E[f(BT)]=E[f(B0)]=f(z). (143)
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B.6. Itô Calculus and Stochastic Differential Equations

In this subsection we consider Itô’s definition of stochastic integration
with respect to Brownian motion. This definition lies at the basis of the
theory of stochastic differential equations. We will describe the Itô calculus
in this context, and discuss the main results, namely Itô’s formula and the
connection with martingales.

We start with the definition of the Itô integral. Let F be the filtration
generated by the standard Brownian motion Bt, and let Yt be a real-valued
process which is Ft-measurable for all t \ 0. In words, this is to say that Yt

is completely determined by the path of the Brownian motion up to time t.
Suppose further that E[Y2

t ] < . for all t \ 0, and that Yt has continuous
sample paths. Then the stochastic integral

Zt=F
t

0
Ys dBs (144)

of Yt with respect to Bt is defined as follows.
First, we approximate the process Ys by a simple process, which takes

on only finitely many values in any interval [0, t):

Y (n)
s =˛n F

k/n

(k − 1)/n
Yr dr for s ¥ 1k

n
,

k+1
n

6 , 1 [ k [ n2 − 1;

0 for s [ 1/n or s > n,
(145)

where k and n are positive integers. Observe that the interval of integration
in (145) does not match with the interval for s. This is done deliberately to
make Y (n)

s depend only on the history of the process, that is, to make Y (n)
s

measurable with respect to Fs. It can be shown that Y (n)
s approaches Ys in

mean-square (that is, E[|Y (n)
s − Ys |2] Q 0) if we send n to infinity. This

allows us to define the stochastic integral (144) as the mean-square limit of
a simple integral.

The simple integral of Y (n)
s with respect to Brownian motion is defined

by the sum

Z (n)
t =F

t

0
Y (n)

s dBs := C
jn

i=1
Y (n)

i/n[Bi/n − B(i − 1)/n]+Y(n)
t [Bt − Bjn/n] (146)

where jn=NntM=max{m ¥ N : m [ nt}. The stochastic integral (144) is
defined as the limit of this expression as n Q ., which is a limit in mean-
square.

An important property of the Itô integral (144), defined as described
above, is that it defines a martingale. More precisely, we have that Zt is a
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martingale with respect to the filtration F. There is also a remarkable con-
verse to this statement, which says that any martingale (M, F) satisfies an
equation of the form

Mt=M0+F
t

0
Ys dBs, t \ 0 (147)

for some suitable process Yt. This relation between martingales and Itô
integrals is very valuable in the theory of stochastic processes.

The stochastic integral (144) is often written in its differential form

dZt=Yt dBt. (148)

The stochastic process Zt defined through this equation may be regarded as
a Brownian motion that at time t has a variance Y2

t . One can also consider
a stochastic process which looks like a Brownian motion with variance Y2

t

and drift Xt at time t. Such a process satisfies the stochastic differential
equation

dZt=Xt dt+Yt dBt. (149)

The corresponding stochastic integral is

Zt=Z0+F
t

0
Xs ds+F

t

0
Ys dBs (150)

where the first integral is an ordinary integral, and the second an Itô
integral. It is to be noted that the process Zt, defined in this way, is a mar-
tingale with respect to F if and only if the drift term Xt is zero for all t.

Suppose now that we are given a stochastic differential equation that
describes some process Xt. To derive the equation satisfied by a stochastic
process f(Xt), which is a function of the process Xt, one uses the Itô cal-
culus. The principle is the same as in ordinary calculus: one considers infi-
nitesimal increments of Xt over the infinitesimal time increment dt, keeping
terms up to first order in dt. However, in the Itô calculus we must treat the
stochastic increment dBt=Bt+dt − Bt as an increment of order (dt)1/2

(consult Gardiner (24) for a nice discussion). Keeping this in mind, one can
derive the Itô formula.

Theorem B.10 (One-Dimensional Itô Formula). Let f(x) be a
function which has (at least) two continuous derivatives in x, and suppose
that Xt satisfies the stochastic differential equation

dXt=a(Xt, t) dt+b(Xt, t) dBt (151)
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where Bt is standard Brownian motion. Then the stochastic process f(Xt)
satisfies

df(Xt)=[a(Xt, t) fŒ(Xt)+1
2 b(Xt, t)2fœ(Xt)] dt+b(Xt, t) fŒ(Xt) dBt.

(152)

This formula expresses the process f(Xt) as the sum of an ordinary
integral and an Itô integral. The fact that any Itô integral defines a mar-
tingale now leads to the important conclusion that the process f(Xt) of the
theorem is a martingale with respect to the Brownian motion if and only if
the drift term in its Itô formula (152) vanishes. This relates the martingale
property of f(Xt) to an ordinary differential equation for f as a function
of x, and is a key to many proofs in SLE.

Of course, one can extend the Itô formula to more dimensions using
the same principles as in the one-dimensional case. That is, one again con-
siders infinitesimal increments up to first order in dt. The increments of the
Brownian motions B i

t are to be treated as increments of order (dt)1/2, but
this time with the added constraint that products like dB i

t dB j
t for i ] j

vanish, since the two Brownian motions are independent. Thus one can
derive the multi-dimensional Itô formula.

Theorem B.11 (Multi-Dimensional Itô Formula). Let f(xF) be a
function of the n variables x1,..., xn of the vector xF, which has (at least) two
continuous derivatives in all of the xi, and suppose that the n processes X i

t

satisfy stochastic differential equations of the form

dX i
t=ai(XF t, t) dt+ C

n

j=1
bij(XF t, t) dB j

t (153)

where BF t=(B1
t ,..., Bn

t ) is standard n-dimensional Brownian motion. Then
the stochastic process f(XF t) satisfies

df(XF t)=5 C
n

i=1
ai(XF t, t)

“f(XF t)
“xi

+
1
2

C
n

i, j, k=1
bik(XF t, t) bjk(XF t, t)

“
2f(XF t)
“xi“xj

6 dt

+ C
n

i, j=1
bij(XF t, t)

“f(XF t)
“xi

dB j
t . (154)

To conclude this appendix, we describe the concept of a (random) time-
change of Brownian motion. As before, let F be the filtration generated by
the standard Brownian motion Bt, and let Xt be a real-valued process with
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continuous sample paths which is Ft-measurable for all t \ 0. Consider the
stochastic process Yt defined through

dYt=Xt dBt, Y0=0. (155)

Then Yt is roughly a Brownian motion that has instantaneous variance X2
t

at every time t. The scaling property of Brownian motion suggests that we
can scale this variance away by a suitable re-parameterization of time, so
that the time-changed process is standard Brownian motion.

Theorem B.12 (Time-Change of Brownian Motion). Let Xt and
Yt be as described above. Assume that Xt is strictly positive and bounded
up to a given stopping time T. For t < T define s(t) :=> t

0 X2
u du, and let

t(s) denote the inverse of this time-change. Then the process Ỹs :=Yt(s) is a
standard Brownian motion up to the time s(T) :=lim t ‘ T s(t).

Proof. Set Wt :=exp(iJYt+
1
2 J2 > t

0 X2
u du), where J ¥ R is fixed. By

standard Itô calculus, the drift term in dWt is zero. Since |Wt | is bounded,
this shows that Wt is a martingale. Therefore, if 0 [ t0 < t1 < T then
E[Wt1

| Ft0
]=Wt0

. Writing s0=s(t0) and s1=s(t1), this gives

E[exp(iJ(Ỹs1
− Ỹs0

)) | F̃s0
]=exp( − 1

2 J2(s1 − s0)) (156)

where we wrote F̃s for the time-changed s-field F̃s :=Ft(s). This equation is
just the characteristic equation saying that Ỹs1

− Ỹs0
is a normally distrib-

uted random variable with mean 0 and variance s1 − s0 (see ref. 25). It
follows that Ỹs is standard Brownian motion. L
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